The use of strain and grain boundaries to tailor phonon transport properties: A first-principles study of 2H-phase CuAlO2. II

被引:5
作者
Witkoske, Evan [1 ]
Tong, Zhen [2 ]
Feng, Yining [3 ]
Ruan, Xiulin [2 ,4 ]
Lundstrom, Mark [1 ]
Lu, Na [3 ,4 ,5 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[5] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
关键词
HIGH-THERMOELECTRIC PERFORMANCE; LATTICE THERMAL-CONDUCTIVITY; ELECTRONIC-STRUCTURE; RECENT PROGRESS; CUMO2; M; FIGURE; OXIDES; MERIT; AL;
D O I
10.1063/1.5142485
中图分类号
O59 [应用物理学];
学科分类号
摘要
Transparent oxide materials, such as CuAlO2, a p-type transparent conducting oxide (TCO), have recently been studied for high temperature thermoelectric power generators and coolers for waste heat. TCO materials are generally low cost and non-toxic. The potential to engineer them through strain and nano-structuring are two promising avenues toward continuously tuning the electronic and thermal properties to achieve high zT values and low $cost/kWh devices. In this work, the strain-dependent lattice thermal conductivity of 2H CuAlO2 is computed by solving the phonon Boltzmann transport equation with interatomic force constants extracted from first-principles calculations. While the average bulk thermal conductivity is around 32W/(mK) at room temperature, it drops to between 5 and 15W/(mK) for typical experimental grain sizes from 3nm to 30nm. We find that strain can offer both an increase as well as a decrease in the thermal conductivity as expected; however, the overall inclusion of small grain sizes dictates the potential for low thermal conductivity in this material.
引用
收藏
页数:10
相关论文
共 82 条
[71]  
The Lancet Global Health, 2016, LANCET GLOB HEALTH, V4, pe427, DOI DOI 10.1063/1.4954055
[72]   Suppression of thermal conductivity in InxGa1-xN alloys by nanometer-scale disorder [J].
Tong, T. ;
Fu, D. ;
Levander, A. X. ;
Schaff, W. J. ;
Pantha, B. N. ;
Lu, N. ;
Liu, B. ;
Ferguson, I. ;
Zhang, R. ;
Lin, J. Y. ;
Jiang, H. X. ;
Wu, J. ;
Cahill, David G. .
APPLIED PHYSICS LETTERS, 2013, 102 (12)
[73]   Comprehensive first-principles analysis of phonon thermal conductivity and electron-phonon coupling in different metals [J].
Tong, Zhen ;
Li, Shouhang ;
Ruan, Xiulin ;
Bao, Hua .
PHYSICAL REVIEW B, 2019, 100 (14)
[74]   Decompose the electron and phonon thermal transport of intermetallic compounds NiAl and Ni3Al by first-principles calculations [J].
Tong, Zhen ;
Bao, Hua .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 117 :972-977
[75]   Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features [J].
Vineis, Christopher J. ;
Shakouri, Ali ;
Majumdar, Arun ;
Kanatzidis, Mercouri G. .
ADVANCED MATERIALS, 2010, 22 (36) :3970-3980
[76]   Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy [J].
Wang, X. W. ;
Lee, H. ;
Lan, Y. C. ;
Zhu, G. H. ;
Joshi, G. ;
Wang, D. Z. ;
Yang, J. ;
Muto, A. J. ;
Tang, M. Y. ;
Klatsky, J. ;
Song, S. ;
Dresselhaus, M. S. ;
Chen, G. ;
Ren, Z. F. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[77]   Thermal Conductivity of Nanocrystalline Silicon: Importance of Grain Size and Frequency-Dependent Mean Free Paths [J].
Wang, Zhaojie ;
Alaniz, Joseph E. ;
Jang, Wanyoung ;
Garay, Javier E. ;
Dames, Chris .
NANO LETTERS, 2011, 11 (06) :2206-2213
[78]   The use of strain to tailor electronic thermoelectric transport properties: A first principles study of 2H-phase CuAlO2 [J].
Witkoske, Evan ;
Guzman, David ;
Feng, Yining ;
Strachan, Alejandro ;
Lundstrom, Mark ;
Lu, Na .
JOURNAL OF APPLIED PHYSICS, 2019, 125 (08)
[79]   Thermoelectric properties of SnO2-based ceramics doped with Nd, Hf or Bi [J].
Yanagiya, S. ;
Nong, N. V. ;
Sonne, M. ;
Pryds, N. .
9TH EUROPEAN CONFERENCE ON THERMOELECTRICS (ECT2011), 2012, 1449 :327-330
[80]   Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges [J].
Zhang, Qi Hao ;
Huang, Xiang Yang ;
Bai, Sheng Qiang ;
Shi, Xun ;
Uher, Ctirad ;
Chen, Li Dong .
ADVANCED ENGINEERING MATERIALS, 2016, 18 (02) :194-213