A CMOS MEMS PIRANI VACUUM GAUGE WITH COMPLEMENTARY BUMP HEAT SINK AND CAVITY HEATER

被引:0
|
作者
Sun, Yi-Chiang [1 ]
Liang, Kai-Chih [1 ,3 ]
Cheng, Chao-Lin [1 ]
Fang, Weileun [1 ,2 ]
机构
[1] Natl Tsing Hua Univ, Dept Power Mech Engn, Hsinchu, Taiwan
[2] Natl Tsing Hua Univ, Inst NanoEngn & MicroSyst, Hsinchu, Taiwan
[3] Taiwan Semicond Mfg Co Ltd, Hsinchu, Taiwan
来源
2014 IEEE 27TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS) | 2014年
关键词
SENSOR; GLASS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel CMOS-MEMS Pirani vacuum gauge with complementary bump heat-sink and cavity heater design has been proposed and demonstrated. This design using CMOS-MEMS process to offer the following advantages for Pirani gauge: (1) The bump heat-sink vertical integrates with cavity heater increases the dynamic range and sensitivity without changing device footprint size, (2) The cavity in heater reduces the thermal mass for low-power operation, and (3) Easy integration with packaged CMOS-MEMS devices for pressure monitoring [1]. The design is implemented using the standard TSMC 0.18 mu m 1P6M CMOS process. A 120 mu mx120 mu m die size with 0.53 mu m sensing gap is demonstrated. Measurement indicates the gauge has sensing range 0.3-100torr with sensitivity of 1.53x10(4)(K/W)/torr. The power consumption is 67 mu W for 1% resistance change. In comparison, the gauge with typical heat-sink/heater design has sensing range 1-100torr with sensitivity of 0.99x10(4)(K/W)/torr and power consumption of 119 mu W.
引用
收藏
页码:676 / 679
页数:4
相关论文
共 18 条
  • [1] PERFORMACE IMPROVEMENT OF CMOS-MEMS PIRANI VACUUM GAUGE WITH HOLLOW HEATER DESIGN
    Sun, Yi-Chiang
    Liang, Kai-Chih
    Cheng, Chao-Lin
    Lin, Ming-Yie
    Chen, Rong-shun
    Fang, Weileun
    2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2015, : 1069 - 1072
  • [2] A CMOS Compatible MEMS Pirani Vacuum Gauge with Monocrystal Silicon Heaters and Heat Sinks
    张乐民
    焦斌斌
    云世昌
    孔延梅
    辜志伟
    陈大鹏
    Chinese Physics Letters, 2017, 34 (02) : 58 - 61
  • [3] A CMOS Compatible MEMS Pirani Vacuum Gauge with Monocrystal Silicon Heaters and Heat Sinks
    Zhang, Le-Min
    Jiao, Bin-Bin
    Yun, Shi-Chang
    Kong, Yan-Mei
    Ku, Chih-Wei
    Chen, Da-Peng
    CHINESE PHYSICS LETTERS, 2017, 34 (02)
  • [4] A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge
    Xu, Wei
    Wang, Xiaoyi
    Pan, Xiaofang
    Bermak, Amine
    Lee, Yi-Kuen
    Yang, Yatao
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (10) : 5155 - 5161
  • [5] Surface Micromachined CMOS-MEMS Pirani Vacuum Gauge With Stacked Temperature Sensor
    Song, Xiangyu
    Huang, Lifeng
    Lin, Yuanjing
    Hong, Linze
    Xu, Wei
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2024, 33 (02) : 274 - 281
  • [6] A MEMS Pirani Vacuum Gauge Based on Porous Silicon
    Lin, Yuzhe
    Zhang, Zichao
    Tao, Jifang
    Wen, Lianggong
    MICROMACHINES, 2025, 16 (03)
  • [7] Integration of a MEMS-type vacuum pump with a MEMS type Pirani pressure gauge
    Grzebyk, Tomasz
    Gorecka-Drzazga, Anna
    Dziuban, Jan A.
    Maamari, Khodr
    An, Seyoung
    Dankovic, Tatjana
    Feinerman, Alan
    Busta, Heinz
    2014 27TH INTERNATIONAL VACUUM NANOELECTRONICS CONFERENCE (IVNC), 2014,
  • [8] Integration of a MEMS-type vacuum pump with a MEMS-type Pirani pressure gauge
    Grzebyk, Tomasz
    Gorecka-Drzazga, Anna
    Dziuban, Jan A.
    Maamari, Khodr
    An, Seyoung
    Dankovic, Tatjana
    Feinerman, Alan
    Busta, Heinz
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2015, 33 (03):
  • [9] Nanogap CMOS-MEMS Pirani Gauge Based on Titanium-Nitride Heating Element for Broad-Range Vacuum Characterization
    Garg, Manu
    Singh, Pushpapraj
    Chiu, Yi
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (02) : 1214 - 1219
  • [10] Gas mixture analysis and vacuum measurement using a CMOS micromachined optical Pirani gauge
    Brown, Keith B.
    Ma, Yuan
    Lawson, Ron P.W.
    Allegretto, Walter
    Vermeulen, Fred E.
    Robinson, Alexander M.
    Canadian Journal of Electrical and Computer Engineering, 2002, 27 (01) : 27 - 31