Factorization problems in complex reflection groups

被引:6
作者
Lewis, Joel Brewster [1 ]
Morales, Alejandro H. [2 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] George Washington Univ, Dept Math, Washington, DC 20052 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2021年 / 73卷 / 04期
关键词
factorizations; complex reflection groups; wreath product; permutations; NON-CROSSING PARTITIONS; NONCROSSING PARTITIONS; COXETER ELEMENTS; FORMULA; ARRANGEMENTS; PRODUCTS; CYCLES; LENGTH; TREES; ORDER;
D O I
10.4153/S0008414X2000022X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We enumerate factorizations of a Coxeter element in a well-generated complex reflection group into arbitrary factors, keeping track of the fixed space dimension of each factor. In the infinite families of generalized permutations, our approach is fully combinatorial. It gives results analogous to those of Jackson in the symmetric group and can be refined to encode a notion of cycle type. As one application of our results, we give a previously overlooked characterization of the poset of W-noncrossing partitions.
引用
收藏
页码:899 / 946
页数:48
相关论文
共 45 条
[21]   Absolute order in general linear groups [J].
Huang, Jia ;
Lewis, Joel Brewster ;
Reiner, Victor .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 :223-247
[22]  
Hurwitz H A., 1891, MATH ANN, V39, P1, DOI [10.1007/BF01199469, DOI 10.1007/BF01199469]
[23]  
Jackson D. M., 2000, ATLAS SMALLER MAPS O
[25]  
Krattenthaler C, 2010, T AM MATH SOC, V362, P2723
[26]  
Lando S. K., 2004, Graphs on Surfaces and their Applications, V141, DOI DOI 10.1007/978-3-540-38361-1
[27]  
Lehrer G. L., 2009, AUS MATH SOC LECT SE, V20
[28]  
Lewis J. B., 2019, FACTORIZATION PROBLE, V82B, P57
[29]  
Marin I., 2010, REPRESENT THEOR, V14, P747, DOI 10.1090/S1088-4165-2010-00380-5
[30]  
Morales A. H, 2012, THESIS MIT