Factorization problems in complex reflection groups

被引:6
作者
Lewis, Joel Brewster [1 ]
Morales, Alejandro H. [2 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] George Washington Univ, Dept Math, Washington, DC 20052 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2021年 / 73卷 / 04期
关键词
factorizations; complex reflection groups; wreath product; permutations; NON-CROSSING PARTITIONS; NONCROSSING PARTITIONS; COXETER ELEMENTS; FORMULA; ARRANGEMENTS; PRODUCTS; CYCLES; LENGTH; TREES; ORDER;
D O I
10.4153/S0008414X2000022X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We enumerate factorizations of a Coxeter element in a well-generated complex reflection group into arbitrary factors, keeping track of the fixed space dimension of each factor. In the infinite families of generalized permutations, our approach is fully combinatorial. It gives results analogous to those of Jackson in the symmetric group and can be refined to encode a notion of cycle type. As one application of our results, we give a previously overlooked characterization of the poset of W-noncrossing partitions.
引用
收藏
页码:899 / 946
页数:48
相关论文
共 45 条
[2]   Noncrossing partitions for the group Dn [J].
Athanasiadis, CA ;
Reiner, V .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 18 (02) :397-417
[3]  
Bernardi O, 2016, ELECTRON J COMB, V23
[4]   Bijections and symmetries for the factorizations of the long cycle [J].
Bernardi, Olivier ;
Morales, Alejandro H. .
ADVANCES IN APPLIED MATHEMATICS, 2013, 50 (05) :702-722
[5]   An analogue of the Harer-Zagier formula for unicellular maps on general surfaces [J].
Bernardi, Olivier .
ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (01) :164-180
[6]   Non-crossing partitions of type (e, e, r) [J].
Bessis, D ;
Corran, R .
ADVANCES IN MATHEMATICS, 2006, 202 (01) :1-49
[7]   Finite complex reflection arrangements are K(π, 1) [J].
Bessis, David .
ANNALS OF MATHEMATICS, 2015, 181 (03) :809-904
[8]   Cyclic Sieving of Noncrossing Partitions for Complex Reflection Groups [J].
Bessis, David ;
Reiner, Victor .
ANNALS OF COMBINATORICS, 2011, 15 (02) :197-222
[9]   A partial order on the orthogonal group [J].
Brady, T ;
Watt, C .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (08) :3749-3754
[10]  
CARTER RW, 1972, COMPOS MATH, V25, P1