Measurement of edge currents in DIII-D and their implication for pedestal stability

被引:32
|
作者
Thomas, DM
Leonard, AW
Groebner, RJ
Osborne, TH
Casper, TA
Snyder, PB
Lao, LL
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
D O I
10.1063/1.1879992
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The present performance limits of tokamak discharges are strongly coupled to the stability and transport properties of the edge plasma. Both experimental and modeling efforts have shown a clear connection between the edge pressure pedestal height and core plasma confinement. The key to understanding the stability and performance limits of the pedestal revolves around an accurate knowledge of the plasma current in this region. Using the Zeeman effect in an injected 30 keV lithium beam, we have measured the currents in the edge of the DIII-D [J. L. Luxon, Nucl. Fusion 42, 6114 (2002)] tokamak for various confinement modes. This method of determining j(r) is insensitive to the large electric fields which coexist in the pedestal region and which complicate motional Stark effect measurements. For the high confinement cases, where substantial pedestal pressures exist, we find large (similar to MA/m(2)), localized (Delta R similar to 1-2 cm) currents in the pedestal region, located near the maximum in the pressure gradient. These values are consistent with calculations of edge bootstrap current using the neoclassical NCLASS [W. A. Houlberg, K. C. Shaing, S. P. Hirshman, and M. C. Zarnstorff, Phys. Plasmas 4, 3230 (1997)] and Sauter [O. Sauter, C. Angioni, and Y. R. Lin-Lin, Phys. Plasmas 6, 2834 (1999)] models and the measured pedestal density and temperature profiles. The apparent consistency of the measured j(EDGE) with neoclassical predictions occurs despite the violation of one of the fundamental tenets of the theory, namely, epsilon=rho(i)/L-P < 1, where rho(i) is the ion poloidal gyroradius and L-p is the pressure gradient scale length. The measured j(EDGE) has also been used to generate self-consistent reconstructions using the free boundary equilibrium solvers CORSICA [T. A. Casper, T. B. Kaiser, R. A. Jong, L. L. LoDestro, J. Moller, and L. D. Pearlstein, Plasma Phys. Controlled Fusion 45, 1193 (2003)] and EFIT [L. L. Lao, H. E. St. John, R. D. Stambough, A. G. Kellman, and W. Pfeiffer, Nucl. Fusion 25, 1611 (1985)]. These equilibria allow us, in conjunction with the edge localized instabilities in tokamak experiments [P. B. Snyder, H. R. Wilson, J. R. Ferron, L. L. Lao, A. W. Leonard, T. H. Osborne, A. D. Turnbull, D. Mossessian, M. Murakami, and X. Q. Xu, Phys. Plasmas 9, 2037 (2002); H. R. Wilson, P. B. Snyder, G. T. A. Huysmans, and R. L. Miller, Phys. Plasmas 9, 1277 (2002)] magnetohydrodynamic stability code, to assess the linear stability of the edge to peeling/ballooning modes. These results are then compared to the measured edge localized mode onset conditions and again good agreement is found between the experimental and model limits on the maximum permissible j(EDGE). (c) 2005 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Investigation of edge pedestal structure in DIII-D
    Stacey, WM
    Groebner, RJ
    PHYSICS OF PLASMAS, 2006, 13 (01) : 1 - 13
  • [2] Investigation of transport in the DIII-D edge pedestal
    Stacey, WM
    PHYSICS OF PLASMAS, 2004, 11 (04) : 1511 - 1519
  • [3] Thermal transport in the DIII-D edge pedestal
    Stacey, W. M.
    Groebner, R. J.
    PHYSICS OF PLASMAS, 2006, 13 (07)
  • [4] Interpretation of edge pedestal rotation measurements in DIII-D
    Stacey, W. M.
    Groebner, R. J.
    PHYSICS OF PLASMAS, 2008, 15 (01)
  • [5] Pedestal studies in DIII-D
    Groebner, RJ
    Osborne, TH
    Fenstermacher, ME
    Leonard, AW
    Mahdavi, MA
    Moyer, RA
    Owen, LW
    Porter, GD
    Snyder, PB
    Stangeby, PC
    Rhodes, TL
    Wolf, NS
    FUSION SCIENCE AND TECHNOLOGY, 2005, 48 (02) : 1011 - 1020
  • [6] Dynamics of pedestal perturbations by ELMs and edge harmonic oscillations in DIII-D
    Zeng, L
    Wang, G
    Doyle, EJ
    Rhodes, TL
    Peebles, WA
    McKee, GR
    Fonck, R
    Burrell, KH
    Fenstermacher, ME
    Boedo, J
    Moyer, R
    PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 : A121 - A129
  • [7] Evolution of edge pedestal transport between edge-localized modes in DIII-D
    Floyd, J. -P.
    Stacey, W. M.
    Groebner, R. J.
    Mellard, S. C.
    PHYSICS OF PLASMAS, 2015, 22 (02)
  • [8] Magnetohydrodynamic interference with the edge pedestal motional Stark effect diagnostic on DIII-D
    King, J. D.
    Makowski, M. A.
    Holcomb, C. T.
    Allen, S. L.
    Hill, D. N.
    La Haye, R. J.
    Turco, F.
    Petty, C. C.
    Van Zeeland, M. A.
    Rhodes, T. L.
    Meyer, W. H.
    Geer, R.
    Morse, E. C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (03):
  • [9] Structure, stability and ELM dynamics of the H-mode pedestal in DIII-D
    Fenstermacher, ME
    Osborne, TH
    Leonard, AW
    Snyder, PB
    Thomas, DM
    Boedo, JA
    Casper, TA
    Groebner, RJ
    Groth, M
    Kempenaars, MAH
    Loarte, A
    McKee, GR
    Meyer, WM
    Saibene, G
    VanZeeland, MA
    Xu, XQ
    Zeng, L
    NUCLEAR FUSION, 2005, 45 (12) : 1493 - 1502
  • [10] Experimentally inferred thermal diffusivities in the edge pedestal between edge-localized modes in DIII-D
    Stacey, W. M.
    Groebner, R. J.
    PHYSICS OF PLASMAS, 2007, 14 (12)