Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression

被引:16
作者
Brandman, David M. [1 ,2 ,3 ]
Burkhart, Michael C. [4 ]
Kelemen, Jessica [5 ]
Franco, Brian [5 ]
Harrison, Matthew T. [4 ]
Hochberg, Leigh R. [2 ,5 ,6 ,7 ,8 ]
机构
[1] Brown Univ, Neurosci Grad Program, Dept Neurosci, Carney Inst Brain Sci, Providence, RI 02912 USA
[2] Brown Univ, Sch Engn, Providence, RI 02912 USA
[3] Dalhousie Univ, Dept Surg Neurosurg, Halifax, NS B3H 347, Canada
[4] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[5] Massachusetts Gen Hosp, Ctr Neurotechnol & Neurorecovery, Neurol, Boston, MA 02114 USA
[6] Dept Vet Affairs Med Ctr, Ctr Neurorestorat & Neurotechnol, Rehabil R&D Serv, Providence, RI 02908 USA
[7] Brown Univ, Carney Inst Brain Sci, Providence, RI 02912 USA
[8] Harvard Med Sch, Neurol, Boston, MA 02115 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
BRAIN-MACHINE INTERFACES; CORTICAL CONTROL; MOVEMENT; SPACE; ALGORITHMS; COMMUNICATION; HUMANS; ARM;
D O I
10.1162/neco_a_01129
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Intracortical brain computer interfaces can enable individuals with paralysis to control external devices through voluntarily modulated brain activity. Decoding quality has been previously shown to degrade with signal nonstationaritiesspecifically, the changes in the statistics of the data between training and testing data sets. This includes changes to the neural tuning profiles and baseline shifts in firing rates of recorded neurons, as well as nonphysiological noise. While progress has been made toward providing long-term user control via decoder recalibration, relatively little work has been dedicated to making the decoding algorithm more resilient to signal nonstationarities. Here, we describe how principled kernel selection with gaussian process regression can be used within a Bayesian filtering framework to mitigate the effects of commonly encountered nonstationarities. Given a supervised training set of (neural features, intention to move in a direction)-pairs, we use gaussian process regression to predict the intention given the neural data. We apply kernel embedding for each neural feature with the standard radial basis function. The multiple kernels are then summed together across each neural dimension, which allows the kernel to effectively ignore large differences that occur only in a single feature. The summed kernel is used for real-time predictions of the posterior mean and variance under a gaussian process framework. The predictions are then filtered using the discriminative Kalman filter to produce an estimate of the neural intention given the history of neural data. We refer to the multiple kernel approach combined with the discriminative Kalman filter as the MK-DKF. We found that the MK-DKF decoder was more resilient to nonstationarities frequently encountered in-real world settings yet provided similar performance to the currently used Kalman decoder. These results demonstrate a method by which neural decoding can be made more resistant to nonstationarities.
引用
收藏
页码:2986 / 3008
页数:23
相关论文
共 59 条
[1]   The effects of adding noise during backpropagation training on a generalization performance [J].
An, GZ .
NEURAL COMPUTATION, 1996, 8 (03) :643-674
[2]  
[Anonymous], COMPUTATIONAL INTELL
[3]  
[Anonymous], ARXIV160806622STATML
[4]   Algorithms for the analysis of ensemble neural spiking activity using simultaneous-event multivariate point-process models [J].
Ba, Demba ;
Temereanca, Simona ;
Brown, Emery N. .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2014, 8
[5]   Neural Point-and-Click Communication by a Person With Incomplete Locked-In Syndrome [J].
Bacher, Daniel ;
Jarosiewicz, Beata ;
Masse, Nicolas Y. ;
Stavisky, Sergey D. ;
Simeral, John D. ;
Newell, Katherine ;
Oakley, Erin M. ;
Cash, Sydney S. ;
Friehs, Gerhard ;
Hochberg, Leigh R. .
NEUROREHABILITATION AND NEURAL REPAIR, 2015, 29 (05) :462-471
[6]   Self-recalibrating classifiers for intracortical brain-computer interfaces [J].
Bishop, William ;
Chestek, Cynthia C. ;
Gilja, Vikash ;
Nuyujukian, Paul ;
Foster, Justin D. ;
Ryu, Stephen I. ;
Shenoy, Krishna V. ;
Yu, Byron M. .
JOURNAL OF NEURAL ENGINEERING, 2014, 11 (02)
[7]   Restoring cortical control of functional movement in a human with quadriplegia [J].
Bouton, Chad E. ;
Shaikhouni, Ammar ;
Annetta, Nicholas V. ;
Bockbrader, Marcia A. ;
Friedenberg, David A. ;
Nielson, Dylan M. ;
Sharma, Gaurav ;
Sederberg, Per B. ;
Glenn, Bradley C. ;
Mysiw, W. Jerry ;
Morgan, Austin G. ;
Deogaonkar, Milind ;
Rezai, Ali R. .
NATURE, 2016, 533 (7602) :247-+
[8]   Rapid calibration of an intracortical brain-computer interface for people with tetraplegia [J].
Brandman, David M. ;
Hosman, Tommy ;
Saab, Jad ;
Burkhart, Michael C. ;
Shanahan, Benjamin E. ;
Ciancibello, John G. ;
Sarma, Anish A. ;
Milstein, Daniel J. ;
Vargas-Irwin, Carlos E. ;
Franco, Brian ;
Kelemen, Jessica ;
Blabe, Christine ;
Murphy, Brian A. ;
Young, Daniel R. ;
Willett, Francis R. ;
Pandarinath, Chethan ;
Stavisky, Sergey D. ;
Kirsch, Robert F. ;
Walter, Benjamin L. ;
Ajiboye, A. Bolu ;
Cash, Sydney S. ;
Eskandar, Emad N. ;
Miller, Jonathan P. ;
Sweet, Jennifer A. ;
Shenoy, Krishna V. ;
Henderson, Jaimie M. ;
Jarosiewicz, Beata ;
Harrison, Matthew T. ;
Simeral, John D. ;
Hochberg, Leigh R. .
JOURNAL OF NEURAL ENGINEERING, 2018, 15 (02)
[9]   Neural Decoding with Kernel-Based Metric Learning [J].
Brockmeier, Austin J. ;
Choi, John S. ;
Kriminger, Evan G. ;
Francis, Joseph T. ;
Principe, Jose C. .
NEURAL COMPUTATION, 2014, 26 (06) :1080-1107
[10]   The time-rescaling theorem and its application to neural spike train data analysis [J].
Brown, EN ;
Barbieri, R ;
Ventura, V ;
Kass, RE ;
Frank, LM .
NEURAL COMPUTATION, 2002, 14 (02) :325-346