Reduction theorems for optimal unambiguous state discrimination of density matrices -: art. no. 022308

被引:69
作者
Raynal, P
Lütkenhaus, N
van Enk, SJ
机构
[1] Univ Erlangen Nurnberg, Quantum Informat Theory Grp, ZEMO, D-91058 Erlangen, Germany
[2] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
来源
PHYSICAL REVIEW A | 2003年 / 68卷 / 02期
关键词
D O I
10.1103/PhysRevA.68.022308
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present reduction theorems for the problem of optimal unambiguous state discrimination of two general density matrices. We show that this problem can be reduced to that of two density matrices that have the same rank n and are described in a Hilbert space of dimensions 2n. We also show how to use the reduction theorems to discriminate unambiguously between N mixed states (Ngreater than or equal to2).
引用
收藏
页数:6
相关论文
共 13 条
[1]  
BERGOU JA, QUANTPH0209007
[2]   Optimum unambiguous discrimination between linearly independent symmetric states [J].
Chefles, A ;
Barnett, SM .
PHYSICS LETTERS A, 1998, 250 (4-6) :223-229
[3]   OVERLAP AND DISTINGUISHABILITY OF QUANTUM STATES [J].
DIEKS, D .
PHYSICS LETTERS A, 1988, 126 (5-6) :303-306
[4]   Mixed-quantum-state detection with inconclusive results [J].
Eldar, YC .
PHYSICAL REVIEW A, 2003, 67 (04) :14
[5]   Optimal discrimination of mixed quantum states involving inconclusive results -: art. no. 012321 [J].
Fiurásek, J ;
Jezek, M .
PHYSICAL REVIEW A, 2003, 67 (01) :5-012321
[6]  
Helstrom C., 1976, QUANTUM DETECTION ES
[7]   HOW TO DIFFERENTIATE BETWEEN NONORTHOGONAL STATES [J].
IVANOVIC, ID .
PHYSICS LETTERS A, 1987, 123 (06) :257-259
[8]   OPTIMAL DISTINCTION BETWEEN 2 NONORTHOGONAL QUANTUM STATES [J].
JAEGER, G ;
SHIMONY, A .
PHYSICS LETTERS A, 1995, 197 (02) :83-87
[9]  
Kraus K., 1983, STATES EFFECTS OPERA
[10]   Optimal distinction between non-orthogonal quantum states [J].
Peres, A ;
Terno, DR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (34) :7105-7111