Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps

被引:1068
作者
Coifman, RR
Lafon, S
Lee, AB
Maggioni, M
Nadler, B
Warner, F
Zucker, SW
机构
[1] Yale Univ, Dept Math, Program Appl Math, New Haven, CT 06510 USA
[2] Yale Univ, Dept Comp Sci, New Haven, CT 06510 USA
关键词
D O I
10.1073/pnas.0500334102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We provide a framework for structural multiscale geometric organization of graphs and subsets of R-n. We use diffusion semigroups to generate multiscale geometries in order to organize and represent complex structures. We show that appropriately selected eigenfunctions or scaling functions of Markov matrices, which describe local transitions, lead to macroscopic descriptions at different scales. The process of iterating or diffusing the Markov matrix is seen as a generalization of some aspects of the Newtonian paradigm, in which local infinitesimal transitions of a system lead to global macroscopic descriptions by integration. We provide a unified view of ideas from data analysis, machine learning, and numerical analysis.
引用
收藏
页码:7426 / 7431
页数:6
相关论文
共 18 条