Controlled Hydrogenation of Graphene Sheets and Nanoribbons

被引:103
作者
Jaiswal, Manu [1 ,2 ]
Lim, Candy Haley Yi Xuan [1 ]
Bao, Qiaoliang [1 ]
Toh, Chee Tat [2 ]
Loh, Kian Ping [1 ]
Oezyilmaz, Barbaros [2 ,3 ,4 ]
机构
[1] Natl Univ Singapore, Dept Chem, Singapore 117542, Singapore
[2] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[3] Natl Univ Singapore, Nanocore, Singapore 117576, Singapore
[4] Natl Univ Singapore, Grad Sch Integrat Sci & Engn NGS, Singapore 117456, Singapore
基金
新加坡国家研究基金会;
关键词
graphene; hydrogenation; electronic properties; Raman spectroscopy;
D O I
10.1021/nn102034y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electronic properties of graphene sheets and nanoribbons with different degrees of hydrogenation have been Investigated using a combination of charge transport and Raman spectroscopy experiments. The field-effect transistor mobility of graphene is shown to be highly sensitive to the treatment time during atomic hydrogen dose and follows an exponential decrease with time. Raman spectroscopy demonstrates linearly increasing defect-band intensity, and when considered together with transport data, the relationship between graphene mobility and the crystalline size of intact sp(2) carbon regions can be derived. Further, the increase In width of the voltage plateau for monolayer and bilayer graphene points to the formation of midgap states. For partially hydrogenated graphene, the temperature-dependent transport in these states shows a weak insulating behavior. A comparison of Raman spectrum and conductivity data of partially hydrogenated monolayer and bilayer graphene suggests that the latter is also quite susceptible to adsorption of hydrogen atoms, despite a stiffer lattice structure.
引用
收藏
页码:888 / 896
页数:9
相关论文
共 35 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Localization and one-parameter scaling in hydrogenated graphene [J].
Bang, Junhyeok ;
Chang, K. J. .
PHYSICAL REVIEW B, 2010, 81 (19)
[3]   Quasiparticle Transformation during a Metal-Insulator Transition in Graphene [J].
Bostwick, Aaron ;
McChesney, Jessica L. ;
Emtsev, Konstantin V. ;
Seyller, Thomas ;
Horn, Karsten ;
Kevan, Stephen D. ;
Rotenberg, Eli .
PHYSICAL REVIEW LETTERS, 2009, 103 (05)
[4]   Impurity-Induced Spin-Orbit Coupling in Graphene [J].
Castro Neto, A. H. ;
Guinea, F. .
PHYSICAL REVIEW LETTERS, 2009, 103 (02)
[5]   Defect Scattering in Graphene [J].
Chen, Jian-Hao ;
Cullen, W. G. ;
Jang, C. ;
Fuhrer, M. S. ;
Williams, E. D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[6]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613
[7]  
FERREIRA A, 2010, UNIFIED DESCRIPTION
[8]   Magnetotransport in transparent single-wall carbon nanotube networks [J].
Jaiswal, Manu ;
Wang, Wei ;
Fernando, K. A. Shiral ;
Sun, Ya-Ping ;
Menon, Reghu .
PHYSICAL REVIEW B, 2007, 76 (11)
[9]   OBSERVATION OF MAGNETIC-FIELD-INDUCED DELOCALIZATION - TRANSITION FROM ANDERSON INSULATOR TO QUANTUM HALL CONDUCTOR [J].
JIANG, HW ;
JOHNSON, CE ;
WANG, KL ;
HANNAHS, ST .
PHYSICAL REVIEW LETTERS, 1993, 71 (09) :1439-1442
[10]   Uncovering the dominant scatterer in graphene sheets on SiO2 [J].
Katoch, Jyoti ;
Chen, J-H ;
Tsuchikawa, Ryuichi ;
Smith, C. W. ;
Mucciolo, E. R. ;
Ishigami, Masa .
PHYSICAL REVIEW B, 2010, 82 (08)