Single-channel electroencephalogram analysis using non-linear subspace techniques

被引:0
|
作者
Teixeira, A. R. [1 ]
Alves, N. [1 ]
Tome, A. M. [1 ]
Boehm, M. [2 ]
Lang, E. W. [2 ]
Puntonet, C. G. [3 ]
机构
[1] Univ Aveiro, DETI IEETA, P-3810193 Aveiro, Portugal
[2] Univ Regensburg, Inst Biophys, D-93040 Regensburg, Germany
[3] Univ Granada, ESTII, E-18071 Granada, Spain
关键词
subspace techniques; local SSA; KPCA; EOG; EEG; removing artifacts;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work. we propose the correction of univariate, single channel EEGs using projective subspace techniques. The biomedical signals which often represent one dimensional time series, need to be transformed to multi-dimensional signal vectors for the latter techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two non-linear subspace techniques to the obtained multidimensional signal. One of the techniques consists in a modified version of Singular Spectrum Analysis (SSA) and the other is kernel Principal Component Analysis (KPCA) implemented using a reduced rank approximation of the kernel matrix. Both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its prominent electrooculogram (EOG) interference.
引用
收藏
页码:865 / +
页数:2
相关论文
共 50 条
  • [41] Open-Source Algorithm for Automated Vigilance State Classification Using Single-Channel Electroencephalogram in Rodents
    Saevskiy, Anton
    Suntsova, Natalia
    Kosenko, Peter
    Alam, Md Noor
    Kostin, Andrey
    SENSORS, 2025, 25 (03)
  • [42] Characteristics of single-channel electroencephalogram in depression during conversation with noise reduction technology
    Mitsukura, Yasue
    Tazawa, Yuuki
    Nakamura, Risa
    Sumali, Brian
    Nakagawa, Tsubasa
    Hori, Satoko
    Mimura, Masaru
    Kishimoto, Taishiro
    PLOS ONE, 2022, 17 (04):
  • [43] Comparative Studies of Single-Channel Speech Enhancement Techniques
    Kumar, Bittu
    Kumar, Neeraj
    Kumar, Manoj
    Prasad, S. V. S.
    Varma, Ashwini Kumar
    Ravi, Banoth
    IETE JOURNAL OF RESEARCH, 2024, 70 (06) : 5704 - 5720
  • [44] Non-negative Matrix Factorization with Linear Constraints for Single-Channel Speech Enhancement
    Lyubimov, Nikolay
    Kotov, Mikhail
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 446 - 450
  • [45] ANALYSIS OF NONSTATIONARY SINGLE-CHANNEL CURRENTS
    SIGWORTH, FJ
    ZHOU, J
    METHODS IN ENZYMOLOGY, 1992, 207 : 746 - 762
  • [46] PHASESHIFT ANALYSIS IN SINGLE-CHANNEL REACTIONS
    PISENT, G
    HELVETICA PHYSICA ACTA, 1963, 36 (02): : 248 - &
  • [47] Video event segmentation and visualisation in non-linear subspace
    Tziakos, Ioannis
    Cavallaro, Andrea
    Xu, Li-Qun
    PATTERN RECOGNITION LETTERS, 2009, 30 (02) : 123 - 131
  • [48] Non-Linear Temporal Subspace Representations for Activity Recognition
    Cherian, Anoop
    Sra, Suvrit
    Gould, Stephen
    Hartley, Richard
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2197 - 2206
  • [49] BLIND CHANNEL SHORTENING OF ADSL CHANNELS WITH A SINGLE-CHANNEL LINEAR PREDICTOR
    Dalzell, W. G.
    Cowan, C. F. N.
    19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 2195 - 2199
  • [50] Non-linear analysis of the electroencephalogram for detecting effects of low-level electromagnetic fields
    M. Bachmann
    J. Kalda
    J. Lass
    V. Tuulik
    M. Säkki
    H. Hinrikus
    Medical and Biological Engineering and Computing, 2005, 43 : 142 - 149