Single-channel electroencephalogram analysis using non-linear subspace techniques

被引:0
|
作者
Teixeira, A. R. [1 ]
Alves, N. [1 ]
Tome, A. M. [1 ]
Boehm, M. [2 ]
Lang, E. W. [2 ]
Puntonet, C. G. [3 ]
机构
[1] Univ Aveiro, DETI IEETA, P-3810193 Aveiro, Portugal
[2] Univ Regensburg, Inst Biophys, D-93040 Regensburg, Germany
[3] Univ Granada, ESTII, E-18071 Granada, Spain
关键词
subspace techniques; local SSA; KPCA; EOG; EEG; removing artifacts;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work. we propose the correction of univariate, single channel EEGs using projective subspace techniques. The biomedical signals which often represent one dimensional time series, need to be transformed to multi-dimensional signal vectors for the latter techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two non-linear subspace techniques to the obtained multidimensional signal. One of the techniques consists in a modified version of Singular Spectrum Analysis (SSA) and the other is kernel Principal Component Analysis (KPCA) implemented using a reduced rank approximation of the kernel matrix. Both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its prominent electrooculogram (EOG) interference.
引用
收藏
页码:865 / +
页数:2
相关论文
共 50 条
  • [31] Non-linear electroencephalogram dynamics induced by magnetic stimulation
    Wang, Hong
    Wang, Yongqiang
    Lu, Peng
    Han, Ling
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 3605 - 3607
  • [32] Process monitoring using non-linear statistical techniques
    Zhang, J
    Martin, EB
    Morris, AJ
    CHEMICAL ENGINEERING JOURNAL, 1997, 67 (03): : 181 - 189
  • [33] Process monitoring using non-linear statistical techniques
    Centre for Process Analysis, Chemometrics Contr., Dept. Chem. P., Newcastle upon Tyne, United Kingdom
    不详
    Chem. Eng. J., 3 (181-189):
  • [34] Enhancement of MR images using non-linear techniques
    Crespo, J
    Maojo, V
    Herrero, C
    Sanandres, JA
    PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 18, PTS 1-5, 1997, 18 : 752 - 753
  • [35] NON-LINEAR NUMERICAL TECHNIQUES FOR THE ANALYSIS OF TURBOMACHINERY COMPONENTS
    Manuel Franco-Nava, Jose
    Dorantes-Gomez, Oscar
    ASME POWER CONFERENCE 2009, 2009, : 419 - 427
  • [36] NON-LINEAR REGRESSION TECHNIQUES IN DATA-ANALYSIS
    CUNNINGHAM, VJ
    MEDICAL INFORMATICS, 1985, 10 (02): : 137 - 142
  • [37] NON-LINEAR DYNAMICAL CIRCUIT ANALYSIS BY SIMPLEX TECHNIQUES
    BLASI, F
    MARTINELLI, G
    ORLANDI, G
    ALTA FREQUENZA, 1980, 49 (04): : 293 - 297
  • [38] Single-Channel Speech Enhancement Using Single Dimension Change Accelerated Particle Swarm Optimization for Subspace Partitioning
    Kalpana Ghorpade
    Arti Khaparde
    Circuits, Systems, and Signal Processing, 2023, 42 : 4343 - 4361
  • [39] Single-Channel Speech Enhancement Using Single Dimension Change Accelerated Particle Swarm Optimization for Subspace Partitioning
    Ghorpade, Kalpana
    Khaparde, Arti
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (07) : 4343 - 4361
  • [40] SINGLE-CHANNEL EEG CLASSIFICATION BY MULTI-CHANNEL TENSOR SUBSPACE LEARNING AND REGRESSION
    Van Eyndhoven, Simon
    Bousse, Martijn
    Hunyadi, Borbala
    de lathauwer, Lieven
    Van Huffel, Sabine
    2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2018,