Quantitative chest computed tomography combined with plasma cytokines predict outcomes in COVID-19 patients

被引:0
作者
Carbonell, Guillermo [1 ,2 ,3 ]
Del Valle, Diane Marie [4 ,5 ,6 ]
Gonzalez-Kozlova, Edgar [4 ,5 ,6 ,7 ]
Marinelli, Brett [1 ]
Klein, Emma [2 ]
El Homsi, Maria [1 ,8 ]
Stocker, Daniel [2 ,9 ]
Chung, Michael [1 ]
Bernheim, Adam [1 ]
Simons, Nicole W. [7 ]
Xiang, Jiani [10 ,12 ]
Nirenberg, Sharon [7 ,10 ,12 ]
Kovatch, Patricia [7 ,10 ,12 ]
Lewis, Sara [1 ,2 ]
Merad, Miriam [4 ,5 ,6 ]
Gnjatic, Sacha [4 ,5 ,6 ,11 ,12 ]
Taouli, Bachir [1 ,2 ,6 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Diagnost Mol & Intervent Radiol, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Biomed Engn & Imaging Inst, New York, NY 10029 USA
[3] Univ Murcia, Dept Radiol, Murcia, Spain
[4] Icahn Sch Med Mt Sinai, Human Immune Monitoring Ctr, New York, NY USA
[5] Precis Immunol Inst, Icahn Sch Med Mt Sinai, New York, NY USA
[6] Icahn Sch Med Mt Sinai, T Canc Inst, New York, NY 10029 USA
[7] Icahn Sch Med Mt Sinai, Genet & Genom Sci, New York, NY USA
[8] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY USA
[9] Univ Hosp Zurich, Inst Diagnost & Intervent Radiol, Zurich, Switzerland
[10] Inst Murciano Invest Biosanit, New York, NY USA
[11] Oncol Sci, New York, NY USA
[12] Icahn Sch Med Mt Sinai, New York, NY USA
关键词
Radiology; Chest CT; Cytokines; COVID-19; SARS-CoV-2; CT; SEVERITY; CORONAVIRUS; PNEUMONIA; FEATURES;
D O I
10.1016/j.heliyon.2022.e10166
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite extraordinary international efforts to dampen the spread and understand the mechanisms behind SARSCoV-2 infections, accessible predictive biomarkers directly applicable in the clinic are yet to be discovered. Recent studies have revealed that diverse types of assays bear limited predictive power for COVID-19 outcomes. Here, we harness the predictive power of chest computed tomography (CT) in combination with plasma cytokines using a machine learning and k-fold cross-validation approach for predicting death during hospitalization and maximum severity degree in COVID-19 patients. Patients (n 1/4 152) from the Mount Sinai Health System in New York with plasma cytokine assessment and a chest CT within five days from admission were included. Demographics, clinical, and laboratory variables, including plasma cytokines (IL-6, IL-8, and TNF-alpha), were collected from the electronic medical record. We found that CT quantitative alone was better at predicting severity (AUC 0.81) than death (AUC 0.70), while cytokine measurements alone better-predicted death (AUC 0.70) compared to severity (AUC 0.66). When combined, chest CT and plasma cytokines were good predictors of death (AUC 0.78) and maximum severity (AUC 0.82). Finally, we provide a simple scoring system (nomogram) using plasma IL-6, IL-8, TNF-alpha, ground-glass opacities (GGO) to aerated lung ratio and age as new metrics that may be used to monitor patients upon hospitalization and help physicians make critical decisions and considerations for patients at high risk of death for COVID-19.
引用
收藏
页数:9
相关论文
共 36 条
[1]  
[Anonymous], 2001, Bioinformatics. The Machine Learning Approach
[2]   QIBA guidance: Computed tomography imaging for COVID-19 quantitative imaging applications [J].
Avila, Ricardo S. ;
Fain, Sean B. ;
Hatt, Chuck ;
Armato, Samuel G., III ;
Mulshine, James L. ;
Gierada, David ;
Silva, Mario ;
Lynch, David A. ;
Hoffman, Eric A. ;
Ranallo, Frank N. ;
Mayo, John R. ;
Yankelevitz, David ;
Estepar, Raul San Jose ;
Subramaniam, Raja ;
Henschke, Claudia, I ;
Guimaraes, Alex ;
Sullivan, Daniel C. .
CLINICAL IMAGING, 2021, 77 :151-157
[3]   Interobserver agreement issues in radiology [J].
Benchoufi, M. ;
Matzner-Lober, E. ;
Molinari, N. ;
Jannot, A-S ;
Soyer, P. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2020, 101 (10) :639-641
[4]   Sample size requirements for estimating Pearson, Kendall and Spearman correlations [J].
Bonett, DG ;
Wright, TA .
PSYCHOMETRIKA, 2000, 65 (01) :23-28
[5]  
Bower K.M., 2003, Six Sigma Forum Magazine, V2, P35, DOI DOI 10.1108/09544780310502750
[6]   Quantitative Chest CT analysis in discriminating COVID-19 from non-COVID-19 patients [J].
Caruso, Damiano ;
Polici, Michela ;
Zerunian, Marta ;
Pucciarelli, Francesco ;
Polidori, Tiziano ;
Guido, Gisella ;
Rucci, Carlotta ;
Bracci, Benedetta ;
Muscogiuri, Emanuele ;
De Dominicis, Chiara ;
Laghi, Andrea .
RADIOLOGIA MEDICA, 2021, 126 (02) :243-249
[7]   Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study [J].
Chen, Nanshan ;
Zhou, Min ;
Dong, Xuan ;
Qu, Jieming ;
Gong, Fengyun ;
Han, Yang ;
Qiu, Yang ;
Wang, Jingli ;
Liu, Ying ;
Wei, Yuan ;
Xia, Jia'an ;
Yu, Ting ;
Zhang, Xinxin ;
Zhang, Li .
LANCET, 2020, 395 (10223) :507-513
[8]  
Chung MS, 2020, EUR RADIOL, V30, P2182, DOI [10.1148/radiol.2020200230, 10.1007/s00330-019-06574-1]
[9]   Qualitative and quantitative chest CT parameters as predictors of specific mortality in COVID-19 patients [J].
Colombi, Davide ;
Villani, Gabriele D. ;
Maffi, Gabriele ;
Risoli, Camilla ;
Bodini, Flavio C. ;
Petrini, Marcello ;
Morelli, Nicola ;
Anselmi, Pietro ;
Milanese, Gianluca ;
Silva, Mario ;
Sverzellati, Nicola ;
Michieletti, Emanuele .
EMERGENCY RADIOLOGY, 2020, 27 (06) :701-710
[10]   Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia [J].
Colombi, Davide ;
Bodini, Flavio C. ;
Petrini, Marcello ;
Maffi, Gabriele ;
Morelli, Nicola ;
Milanese, Gianluca ;
Silva, Mario ;
Sverzellati, Nicola ;
Michieletti, Emanuele .
RADIOLOGY, 2020, 296 (02) :E86-E96