Feed in summer, rest in winter: microbial carbon utilization in forest topsoil

被引:138
作者
Zifcakova, Lucia [1 ,2 ]
Vetrovsky, Tomas [1 ]
Lombard, Vincent [3 ,4 ]
Henrissat, Bernard [3 ,4 ,5 ]
Howe, Adina [6 ]
Baldrian, Petr [1 ]
机构
[1] CAS, Inst Microbiol, Vidensk 1083, Prague 14220 4, Czech Republic
[2] Charles Univ Prague, Fac Sci, Albertov 6, Prague 12843 2, Czech Republic
[3] Aix Marseille Univ, CNRS, Architecture & Fonct Macromol Biol, Marseille, France
[4] INRA, USC AFMB 1408, Marseille, France
[5] King Abdulaziz Univ, Dept Biol Sci, Jeddah, Saudi Arabia
[6] Iowa State Univ, Ames, IA USA
关键词
Auxiliary activity enzymes; Bacteria; Carbon cycle; Carbohydrate-active enzymes; Coniferous forests; Decomposition; Fungi; Glycoside hydrolases; Lignocellulose-degradation; Seasonality; Transcriptomics; EXTRACELLULAR ENZYME-ACTIVITIES; FUNGAL COMMUNITIES; ECTOMYCORRHIZAL FUNGI; BACTERIAL COMMUNITY; SEASONAL DYNAMICS; LITTER DECOMPOSITION; CD-HIT; SOIL; TEMPERATURE; DIVERSITY;
D O I
10.1186/s40168-017-0340-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Evergreen coniferous forests contain high stocks of organic matter. Significant carbon transformations occur in litter and soil of these ecosystems, making them important for the global carbon cycle. Due to seasonal allocation of photosynthates to roots, carbon availability changes seasonally in the topsoil. The aim of this paper was to describe the seasonal differences in C source utilization and the involvement of various members of soil microbiome in this process. Results: Here, we show that microorganisms in topsoil encode a diverse set of carbohydrate-active enzymes, including glycoside hydrolases and auxiliary enzymes. While the transcription of genes encoding enzymes degrading reserve compounds, such as starch or trehalose, was high in soil in winter, summer was characterized by high transcription of ligninolytic and cellulolytic enzymes produced mainly by fungi. Fungi strongly dominated the transcription in litter and an equal contribution of bacteria and fungi was found in soil. The turnover of fungal biomass appeared to be faster in summer than in winter, due to high activity of enzymes targeting its degradation, indicating fast growth in both litter and soil. In each enzyme family, hundreds to thousands of genes were typically transcribed simultaneously. Conclusions: Seasonal differences in the transcription of glycoside hydrolases and auxiliary enzyme genes are more pronounced in soil than in litter. Our results suggest that mainly fungi are involved in decomposition of recalcitrant biopolymers in summer, while bacteria replace them in this role in winter. Transcripts of genes encoding enzymes targeting plant biomass biopolymers, reserve compounds and fungal cell walls were especially abundant in the coniferous forest topsoil.
引用
收藏
页数:12
相关论文
共 86 条
[1]  
[Anonymous], 1980, ECOL BULL
[2]  
Baldrian P, 2008, BR MYCOL SY, V28, P19
[3]   Forest microbiome: diversity, complexity and dynamics [J].
Baldrian, Petr .
FEMS MICROBIOLOGY REVIEWS, 2017, 41 (02) :109-130
[4]   Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change [J].
Baldrian, Petr ;
Snajdr, Jaroslav ;
Merhautova, Vera ;
Dobiasova, Petra ;
Cajthaml, Tomas ;
Valaskova, Vendula .
SOIL BIOLOGY & BIOCHEMISTRY, 2013, 56 :60-68
[5]   Active and total microbial communities in forest soil are largely different and highly stratified during decomposition [J].
Baldrian, Petr ;
Kolarik, Miroslav ;
Stursova, Martina ;
Kopecky, Jan ;
Valaskova, Vendula ;
Vetrovsky, Tomaas ;
Zifcakova, Lucia ;
Snajdr, Jaroslav ;
Ridl, Jakub ;
Vlcek, Cestmir ;
Voriskova, Jana .
ISME JOURNAL, 2012, 6 (02) :248-258
[6]   Genomic Potential for Polysaccharide Deconstruction in Bacteria [J].
Berlemont, Renaud ;
Martiny, Adam C. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (04) :1513-1519
[7]   Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies [J].
Blagodatskaya, E. V. ;
Blagodatsky, S. A. ;
Anderson, T.-H. ;
Kuzyakov, Y. .
APPLIED SOIL ECOLOGY, 2007, 37 (1-2) :95-105
[8]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[9]   Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community [J].
Brabcova, Vendula ;
Novakova, Monika ;
Davidova, Anna ;
Baldrian, Petr .
NEW PHYTOLOGIST, 2016, 210 (04) :1369-1381
[10]  
Buckley D, 2002, BIODIVERSITY MICROBI, P183