Investigations of Electro-hydrothermally Grown ZnO Nanostructures on Copper Grids

被引:0
|
作者
Yu, Tzu-Yi [1 ]
Hung, Chen Hao [2 ]
Lee, Yu Shan [2 ]
Lin, Chia Feng [3 ]
Su, Wei Min [2 ]
Lu, Chien-Cheng [2 ]
Weng, Cheng-Yuan [2 ]
Wu, Yewchung Sermon [4 ]
Wu, Pei Yu [4 ]
Chen, Hsiang [2 ]
机构
[1] Natl Chi Nan Univ, Dept Informat Management, Nantou, Taiwan
[2] Natl Chi Nan Univ, Dept Appl Mat & Optoelect Engn, Nantou, Taiwan
[3] Natl Chung Hsing Univ, Dept Mat Sci & Engn, Taichung, Taiwan
[4] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan
关键词
electro-hydrothermal; copper grids; nanoflowers; nanorods; grid holes; ZINC-OXIDE NANORODS; SUBSTRATE; SILICON; ARRAYS;
D O I
暂无
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Two types of ZnO nanostructures were electro-hydrothermally deposited on mesh 100 and 200 copper grids. To investigate the nanostructures, multiple material analyses were used to analyze the material properties. FESEM images indicate that nanoflowers/nanorods could be grown on the mesh 100 copper grids while a single layer of ZnO nanorods could be grown on the mesh 200 copper grids. Since the size of the grid holes might influence the chemical reactions during the growth of the nanostructures, all the other material analyzes also reveale1 distinct material characteristics of these two types of nanostructures on the copper grid. Based on the experimental results, modulating the ZnO nanostructure will be helpful for future applications of ZnO nanostructures on copper substrates.
引用
收藏
页码:71 / 75
页数:5
相关论文
共 50 条
  • [21] Unusual electrical properties of hydrothermally grown ZnO
    Look, D. C.
    SUPERLATTICES AND MICROSTRUCTURES, 2007, 42 (1-6) : 284 - 289
  • [22] Optical Properties of Hydrothermally Grown ZnO Nanoflowers
    Samanta P.K.
    Nanoscience and Nanotechnology - Asia, 2022, 12 (03): : 39 - 45
  • [23] Photoresponse of hydrothermally grown lateral ZnO nanowires
    Yang, Po-Yu
    Wang, Jyh-Liang
    Tsai, Wei-Chih
    Wang, Shui-Jinn
    Lin, Jia-Chuan
    Lee, I-Che
    Chang, Chia-Tsung
    Cheng, Huang-Chung
    THIN SOLID FILMS, 2010, 518 (24) : 7328 - 7332
  • [24] PLASMA HYDROGENATION OF HYDROTHERMALLY GROWN ZnO MICROPODS
    Remes, Zdenek
    Dragounova, Katerina Aubrechtova
    Micova, Julia
    12TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2020), 2021, : 512 - 517
  • [25] Luminescence properties of hydrothermally grown ZnO nanorods
    Yatskiv, R.
    Grym, J.
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 99 : 214 - 220
  • [26] Annealing study of hydrothermally grown ZnO wafers
    Borseth, T. M.
    Svensson, B. G.
    Kuznetsov, A. Yu
    PHYSICA SCRIPTA, 2006, T126 : 10 - 14
  • [27] Hydrothermally Synthesized One-Dimensional ZnO Nanostructures
    Wu, Wan-Yu
    Ting, Jyh-Ming
    Kung, Wen-Yen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) : K71 - K75
  • [28] Structural and optical investigations on seed layer assisted hydrothermally grown ZnO nanorods on flat and textured substrates
    Rayerfrancis, Arokiyadoss
    Bhargav, P. Balaji
    Ahmed, Nafis
    Balaji, C.
    Dhara, Sandip
    MATERIALS RESEARCH EXPRESS, 2016, 3 (12)
  • [29] Investigations of ZnO nanostructures grown on patterned sapphire using different precursors in aqueous solutions
    Yu, Naisen
    Dong, Bin
    Yu, WenWen
    Hu, Boya
    Zhang, Yongqiang
    Cong, Yan
    APPLIED SURFACE SCIENCE, 2012, 258 (15) : 5729 - 5732
  • [30] High temperature electrical conductivity in hydrothermally grown ZnO
    Lott, K.
    Nirk, T.
    Tuern, L.
    Shinkarenko, S.
    Oepik, A.
    Kortunova, E.
    Shvanskiy, P.
    Gorokhova, E.
    Vishnjakov, A.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 11, NO 9-10, 2014, 11 (9-10): : 1481 - 1484