Equivalence of replica and cavity methods for computing spectra of sparse random matrices

被引:13
|
作者
Slanina, Frantisek [1 ]
机构
[1] Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague, Czech Republic
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 01期
关键词
DENSITY-OF-STATES; CHARACTERISTIC VECTORS; ANALYTIC COMPUTATION; EIGENVALUE SPECTRUM; BORDERED MATRICES; APPROXIMATION; LOCALIZATION; STATISTICS; DIFFUSION; PHYSICS;
D O I
10.1103/PhysRevE.83.011118
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show by direct calculation that the replica and cavity methods are exactly equivalent for the spectrum of an Erdos-Renyi random graph. We introduce a variational formulation based on the cavity method and use it to find approximate solutions for the density of eigenvalues. We also use this variational method for calculating spectra of sparse covariance matrices.
引用
收藏
页数:8
相关论文
共 20 条
  • [1] Theory of Sparse Random Matrices and Vibrational Spectra of Amorphous Solids
    Beltukov, Y. M.
    Parshin, D. A.
    PHYSICS OF THE SOLID STATE, 2011, 53 (01) : 151 - 162
  • [2] Hammerstein equations for sparse random matrices
    Akara-pipattana, Pawat
    Evnin, Oleg
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (03)
  • [3] Spectra of Sparse Non-Hermitian Random Matrices: An Analytical Solution
    Neri, I.
    Metz, F. L.
    PHYSICAL REVIEW LETTERS, 2012, 109 (03)
  • [4] Spectral theory of sparse non-Hermitian random matrices
    Metz, Fernando Lucas
    Neri, Izaak
    Rogers, Tim
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (43)
  • [5] Largest eigenvalues and eigenvectors of band or sparse random matrices
    Benaych-Georges, Florent
    Peche, Sandrine
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 9
  • [6] Path-integral approach to sparse non-Hermitian random matrices
    Baron, Joseph W.
    PHYSICAL REVIEW E, 2025, 111 (03)
  • [7] Bulk universality of sparse random matrices
    Huang, Jiaoyang
    Landon, Benjamin
    Yau, Horng-Tzer
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (12)
  • [8] Spectra of nearly Hermitian random matrices
    O'Rourke, Sean
    Wood, Philip Matchett
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (03): : 1241 - 1279
  • [9] Extreme eigenvalues of sparse, heavy tailed random matrices
    Auffinger, Antonio
    Tang, Si
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (11) : 3310 - 3330
  • [10] Eigenvalue spectra of finely structured random matrices
    Poley, Lyle
    Galla, Tobias
    Baron, Joseph W.
    PHYSICAL REVIEW E, 2024, 109 (06)