Direct numerical simulations of spiral Taylor-Couette turbulence

被引:13
作者
Berghout, Pieter [1 ,2 ,3 ]
Dingemans, Rick J. [1 ,2 ,3 ]
Zhu, Xiaojue [1 ,2 ,3 ,4 ,5 ]
Verzicco, Roberto [1 ,2 ,3 ,6 ,7 ]
Stevens, Richard J. A. M. [1 ,2 ,3 ]
van Saarloos, Wim [8 ]
Lohse, Detlef [1 ,2 ,3 ,9 ]
机构
[1] Univ Twente, Phys Fluids Grp, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, Max Planck Ctr Twente, MESA Inst, POB 217, NL-7500 AE Enschede, Netherlands
[3] Univ Twente, JM Burgers Ctr Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
[4] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA 02138 USA
[5] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[6] Univ Roma Tor Vergata, Dipartimento Ingn Ind, Via Politecn 1, I-00133 Rome, Italy
[7] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[8] Leiden Univ, Inst Lorentz, Postbus 9506, NL-2300 RA Leiden, Netherlands
[9] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
关键词
Taylor-Couette flow; pattern formation; rotating turbulence; TRANSITION; FLOW; STABILITY;
D O I
10.1017/jfm.2020.33
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We perform direct numerical simulations of spiral turbulent Taylor-Couette (TC) flow for 400 6 Rei 6 1200 and 2000 6 Reo 6 1000, i.e. counter-rotation. The aspect ratio D height =gap width of the domain is 42 6 6 125, with periodic boundary conditions in the axial direction, and the radius ratio D ri =ro D 0:91. We show that, with decreasing Rei or with decreasing Reo, the formation of a turbulent spiral from an initially `featureless turbulent' flow can be described by the phenomenology of the Ginzburg-Landau equations, similar as seen in the experimental findings of Prigent et al. (Phys. Rev. Lett., vol. 89, 2002, 014501) for TC flow at D 0 :98 an D 430 and in numerical simulations of oblique turbulent bands in plane Couette flow by Rolland & Manneville (Eur. Phys. J., vol. 80, 2011, pp. 529-544). We therefore conclude that the Ginzburg-Landau description also holds when curvature effects play a role, and that the finite-wavelength instability is not a consequence of the no-slip boundary conditions at the upper and lower plates in the experiments. The most unstable axial wavelength z;c=d 41 in our simulations differs from findings in Prigent et al., where z;c =d 32, and so we conclude that z;c depends on the radius ratio . Furthermore, we find that the turbulent spiral is stationary in the reference frame of the mean velocity in the gap, rather than the mean velocity of the two rotating cylinders.
引用
收藏
页数:16
相关论文
共 34 条
[1]   FLOW REGIMES IN A CIRCULAR COUETTE SYSTEM WITH INDEPENDENTLY ROTATING CYLINDERS [J].
ANDERECK, CD ;
LIU, SS ;
SWINNEY, HL .
JOURNAL OF FLUID MECHANICS, 1986, 164 :155-183
[2]  
[Anonymous], 2000, Turbulent ows
[3]  
[Anonymous], 1944, T AM SOC MECH ENG, DOI DOI 10.1115/1.4018140
[4]   Computational study of turbulent laminar patterns in Couette flow [J].
Barkley, D ;
Tuckerman, LS .
PHYSICAL REVIEW LETTERS, 2005, 94 (01) :1-4
[5]  
Barkley D., 2016, J FLUID MECH, V643, P495
[6]   Mean flow of turbulent-laminar patterns in plane Couette flow [J].
Barkley, Dwight ;
Tuckerman, Laurette S. .
JOURNAL OF FLUID MECHANICS, 2007, 576 (109-137) :109-137
[7]   ANALOGY BETWEEN STREAMLINE CURVATURE AND BUOYANCY IN TURBULENT SHEAR FLOW [J].
BRADSHAW, P .
JOURNAL OF FLUID MECHANICS, 1969, 36 :177-&
[8]   Subcritical transition and spiral turbulence in circular Couette flow [J].
Burin, M. J. ;
Czarnocki, C. J. .
JOURNAL OF FLUID MECHANICS, 2012, 709 :106-122
[9]   TRANSITION IN CIRCULAR COUETTE FLOW [J].
COLES, D .
JOURNAL OF FLUID MECHANICS, 1965, 21 :385-&
[10]   Turbulent bursts in Couette-Taylor flow [J].
Coughlin, K ;
Marcus, PS .
PHYSICAL REVIEW LETTERS, 1996, 77 (11) :2214-2217