Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving

被引:55
作者
Gurtin, ME [1 ]
Podio-Guidugli, P
机构
[1] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
[2] Univ Roma Tor Vergata, Dipartimento Ingn Civile, I-00133 Rome, Italy
基金
美国国家科学基金会;
关键词
crack propagation and arrest; dynamic fracture; fracture; anisotropic materials;
D O I
10.1016/S0022-5096(98)00002-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper develops a framework for dynamical fracture, concentrating on the derivation of balance equations and constitutive equations that describe the motion of the crack tip in two space-dimensions. The theory is based on a configurational force balance and a mechanical version of the second law of thermodynamics. Kinking and curving of the crack are allowed under the assumption that the crack will propagate in a direction that maximizes the rate at which it dissipates energy. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1343 / 1378
页数:36
相关论文
共 34 条
[1]  
[Anonymous], 1974, 560 ASTM STP
[2]  
ATKINSON C, 1968, INT J FRACT MECH, V4, P3
[3]   SLIGHTLY CURVED OR KINKED CRACKS [J].
COTTERELL, B ;
RICE, JR .
INTERNATIONAL JOURNAL OF FRACTURE, 1980, 16 (02) :155-169
[4]  
COTTERELL B, 1965, INT J FRACT MECH, V1, P96
[6]  
ESHELBY JD, 1956, PROGR SOLID STATE PH, V3
[7]  
ESHELBY JD, 1970, INELASTIC BEHAV SOLI
[8]  
FRANK FC, 1963, GROWTH PERFECTION CR
[9]  
Freund L. B., 1972, Journal of Elasticity, V2, P341, DOI 10.1007/BF00045718
[10]  
Freund L. B., 1990, DYNAMIC FRACTURE MEC