Comparison of nuclear data uncertainty propagation methodologies for PWR burn-up simulations

被引:42
作者
Diez, C. J. [1 ]
Buss, O. [3 ]
Hoefer, A. [3 ]
Porsch, D. [4 ]
Cabellos, O. [1 ,2 ]
机构
[1] Univ Politecn Madrid, Escuela Tecn Super Ingn Ind, Dept Ingn Nucl, E-28006 Madrid, Spain
[2] Univ Politecn Madrid, Escuela Tecn Super Ingn Ind, Inst Fus Nucl, E-28006 Madrid, Spain
[3] AREVA GmbH, Dept Radiol & Crit, D-63067 Offenbach, Germany
[4] AREVA GmbH, Dept Neutron, D-91052 Erlangen, Germany
关键词
Uncertainty quantification; Burn-up; PWR; Nuclear data uncertainties; NUDUNA; Hybrid Method; FISSION YIELD; DATA LIBRARY; GENERATION; SCIENCE; ENDF/B-VII.0; COVARIANCES; FUEL;
D O I
10.1016/j.anucene.2014.10.022
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Several methodologies using different levels of approximations have been developed for propagating nuclear data uncertainties in nuclear burn-up simulations. Most methods fall into the two broad classes of Monte Carlo approaches, which are exact apart from statistical uncertainties but require additional computation time, and first order perturbation theory approaches, which are efficient for not too large numbers of considered response functions but only applicable for sufficiently small nuclear data uncertainties. Some methods neglect isotopic composition uncertainties induced by the depletion steps of the simulations, others neglect neutron flux uncertainties, and the accuracy of a given approximation is often very hard to quantify. In order to get a better sense of the impact of different approximations, this work aims to compare results obtained based on different approximate methodologies with an exact method, namely the NUDUNA Monte Carlo based approach developed by AREVA GmbH. In addition, the impact of different covariance data is studied by comparing two of the presently most complete nuclear data covariance libraries (ENDF/B-VII.1 and SCALE 6.0), which reveals a high dependency of the uncertainty estimates on the source of covariance data. The burn-up benchmark Exercise I-1b proposed by the OECD expert group "Benchmarks for Uncertainty Analysis in Modeling (UAM) for the Design, Operation and Safety Analysis of LWRs" is studied as an example application. The burn-up simulations are performed with the SCALE 6.0 tool suite. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:101 / 114
页数:14
相关论文
共 44 条
[1]  
[Anonymous], 2003, SENSITIVITY UNCERTAI, DOI DOI 10.1201/9780203911396.CH10
[2]  
[Anonymous], 2005, MCNP-X TM User's Manual
[3]  
BUSS O., 2011, P INT C NUCL CRIT IC
[4]   PROPAGATION OF NUCLEAR DATA UNCERTAINTIES FOR PWR CORE ANALYSIS [J].
Cabellos, O. ;
Castro, E. ;
Ahnert, C. ;
Holgado, C. .
NUCLEAR ENGINEERING AND TECHNOLOGY, 2014, 46 (03) :299-312
[5]   Presentation and Discussion of the UAM/Exercise I-1b: "Pin-Cell Burn-Up Benchmark" with the Hybrid Method [J].
Cabellos, O. .
SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS, 2013, 2013
[6]  
Cabellos O., 2011, Transactions of the American Nuclear Society, V104, P369
[7]  
Cabellos O., 2014, JEFDOC1566 OECDNEA D
[8]  
Cabellos O., 2011, INT C NUCL CRIT ICNC
[9]   ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology [J].
Chadwick, M. B. ;
Oblozinsky, P. ;
Herman, M. ;
Greene, N. M. ;
McKnight, R. D. ;
Smith, D. L. ;
Young, P. G. ;
MacFarlane, R. E. ;
Hale, G. M. ;
Frankle, S. C. ;
Kahler, A. C. ;
Kawano, T. ;
Little, R. C. ;
Madland, D. G. ;
Moller, P. ;
Mosteller, R. D. ;
Page, P. R. ;
Talou, P. ;
Trellue, H. ;
White, M. C. ;
Wilson, W. B. ;
Arcilla, R. ;
Dunford, C. L. ;
Mughabghab, S. F. ;
Pritychenko, B. ;
Rochman, D. ;
Sonzogni, A. A. ;
Lubitz, C. R. ;
Trumbull, T. H. ;
Weinman, J. P. ;
Brown, D. A. ;
Cullen, D. E. ;
Heinrichs, D. P. ;
McNabb, D. P. ;
Derrien, H. ;
Dunn, M. E. ;
Larson, N. M. ;
Leal, L. C. ;
Carlson, A. D. ;
Block, R. C. ;
Briggs, J. B. ;
Cheng, E. T. ;
Huria, H. C. ;
Zerkle, M. L. ;
Kozier, K. S. ;
Courcelle, A. ;
Pronyaev, V. ;
van der Marck, S. C. .
NUCLEAR DATA SHEETS, 2006, 107 (12) :2931-3059
[10]   ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data [J].
Chadwick, M. B. ;
Herman, M. ;
Oblozinsky, P. ;
Dunn, M. E. ;
Danon, Y. ;
Kahler, A. C. ;
Smith, D. L. ;
Pritychenko, B. ;
Arbanas, G. ;
Arcilla, R. ;
Brewer, R. ;
Brown, D. A. ;
Capote, R. ;
Carlson, A. D. ;
Cho, Y. S. ;
Derrien, H. ;
Guber, K. ;
Hale, G. M. ;
Hoblit, S. ;
Holloway, S. ;
Johnson, T. D. ;
Kawano, T. ;
Kiedrowski, B. C. ;
Kim, H. ;
Kunieda, S. ;
Larson, N. M. ;
Leal, L. ;
Lestone, J. P. ;
Little, R. C. ;
McCutchan, E. A. ;
MacFarlane, R. E. ;
MacInnes, M. ;
Mattoon, C. M. ;
McKnight, R. D. ;
Mughabghab, S. F. ;
Nobre, G. P. A. ;
Palmiotti, G. ;
Palumbo, A. ;
Pigni, M. T. ;
Pronyaev, V. G. ;
Sayer, R. O. ;
Sonzogni, A. A. ;
Summers, N. C. ;
Talou, P. ;
Thompson, I. J. ;
Trkov, A. ;
Vogt, R. L. ;
van der Marck, S. C. ;
Wallner, A. ;
White, M. C. .
NUCLEAR DATA SHEETS, 2011, 112 (12) :2887-2996