Mechanistic differences in RNA-dependent DNA polymerization and fidelity between murine leukemia virus and HIV-1 reverse transcriptases

被引:52
作者
Skasko, M
Weiss, KK
Reynolds, HM
Jamburuthugoda, V
Lee, K
Kim, B
机构
[1] Univ Rochester, Med Ctr, Dept Microbiol & Immunol, Rochester, NY 14642 USA
[2] Univ Rochester, Dept Biochem & Biophys, Rochester, NY 14642 USA
关键词
D O I
10.1074/jbc.M412859200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We compared the mechanistic and kinetic properties of murine leukemia virus (MuLV) and human immunodeficiency virus type 1 (HIV-1) reverse transcriptases (RTs) during RNA-dependent DNA polymerization and mutation synthesis using pre-steady-state kinetic analysis. First, MuLV RT showed 6.5-121.6-fold lower binding affinity (K-d) to deoxynucleotide triphosphate (dNTP) substrates than HIV-1 RT, although the two RTs have similar incorporation rates (k(pol)). Second, compared with HIV-1 RT, MuLV RT showed dramatic reduction during multiple dNTP incorporations at low dNTP concentrations. Presumably, due to its low dNTP binding affinity, the dNTP binding step becomes rate-limiting in the multiple rounds of the dNTP incorporation by MuLV RT, especially at low dNTP concentrations. Third, similar fold differences between MuLV and HIV-1 RTs in the K-d and k(pol) values to correct and incorrect dNTPs were observed. This indicates that these two RT proteins have similar misinsertion fidelities. Fourth, these two RT proteins have different mechanistic capabilities regarding mismatch extension. MuLV RT has a 3.1-fold lower mismatch extension fidelity, compared with HIV-1 RT. Finally, MuLV RT has a 3.8-fold lower binding affinity to mismatched template/primer (T/P) substrate compared with HIV-1 RT. Our data suggest that the active site of MuLV RT has an intrinsically low dNTP binding affinity, compared with HIV-1 RT. In addition, instead of the misinsertion step, the mismatch extension step, which varies between MuLV and HIV-1 RTs, contributes to their fidelity differences. The implications of these kinetic differences between MuLV and HIV-1 RTs on viral cell type specificity and mutagenesis are discussed.
引用
收藏
页码:12190 / 12200
页数:11
相关论文
共 65 条
[1]  
[Anonymous], 1996, Fields virology
[2]   The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus [J].
Avidan, O ;
Meer, ME ;
Oz, I ;
Hizi, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (03) :859-867
[3]   Reduced replication of 3TC-resistant HIV-1 variants in primary cells due to a processivity defect of the reverse transcriptase enzyme [J].
Back, NKT ;
Nijhuis, M ;
Keulen, W ;
Boucher, CAB ;
Essink, BBO ;
vanKuilenburg, ABP ;
vanGennip, AH ;
Berkhout, B .
EMBO JOURNAL, 1996, 15 (15) :4040-4049
[4]   FIDELITY OF THE RNA-DEPENDENT DNA-SYNTHESIS EXHIBITED BY THE REVERSE TRANSCRIPTASES OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 AND TYPE-2 AND OF MURINE LEUKEMIA-VIRUS - MISPAIR EXTENSION FREQUENCIES [J].
BAKHANASHVILI, M ;
HIZI, A .
BIOCHEMISTRY, 1992, 31 (39) :9393-9398
[5]   THE FIDELITY OF THE REVERSE TRANSCRIPTASES OF HUMAN IMMUNODEFICIENCY VIRUSES AND MURINE LEUKEMIA-VIRUS, EXHIBITED BY THE MISPAIR EXTENSION FREQUENCIES, IS SEQUENCE DEPENDENT AND ENZYME RELATED [J].
BAKHANASHVILI, M ;
HIZI, A .
FEBS LETTERS, 1993, 319 (1-2) :201-205
[6]   FIDELITY OF DNA-SYNTHESIS EXHIBITED IN-VITRO BY THE REVERSE-TRANSCRIPTASE OF THE LENTIVIRUS EQUINE INFECTIOUS-ANEMIA VIRUS [J].
BAKHANASHVILI, M ;
HIZI, A .
BIOCHEMISTRY, 1993, 32 (29) :7559-7567
[7]  
BATTULA N, 1974, J BIOL CHEM, V249, P4086
[8]   Vertical-scanning mutagenesis of a critical tryptophan in the minor groove binding track of HIV-1 reverse transcriptase - Molecular nature of polymerase-nucleic acid interactions [J].
Beard, WA ;
Bebenek, K ;
Darden, TA ;
Li, L ;
Prasad, R ;
Kunkel, TA ;
Wilson, SH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (46) :30435-30442
[9]  
BEBENEK K, 1989, J BIOL CHEM, V264, P16948
[10]   A MUTANT OF DNA-POLYMERASE-I (KLENOW FRAGMENT) WITH REDUCED FIDELITY [J].
CARROLL, SS ;
COWART, M ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1991, 30 (03) :804-813