BOUNDED STATE SOLUTIONS OF KIRCHHOFF TYPE PROBLEMS WITH A CRITICAL EXPONENT IN HIGH DIMENSION

被引:11
作者
Xie, Qilin [1 ]
Yu, Jianshe [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Kirchhoff type problems; critical exponent; bounded state solutions; high dimension; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; GROUND-STATES; EXISTENCE; MULTIPLICITY;
D O I
10.3934/cpaa.2019008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we consider the following Kirchhoff type problem {-(a+lambda integral(N)(R)vertical bar del u vertical bar(2)dx)Delta u + V(x)u = vertical bar u vertical bar(2)*(-2)u in R-N, u is an element of D-1,D-2(R-N), where a is a positive constant, lambda is a positive parameter, V is an element of L-N/2 (R-N) is a given nonnegative function and 2* is the critical exponent. The existence of bounded state solutions for Kirchhoff type problem with critical exponents in the whole RN (N >= 5) has never been considered so far. We obtain sufficient conditions on the existence of bounded state solutions in high dimension N >= 4, and especially it is the fist time to consider the case when N >= 5 in the literature.
引用
收藏
页码:129 / 158
页数:30
相关论文
共 25 条
[1]   ON A CLASS OF NONLOCAL ELLIPTIC PROBLEMS WITH CRITICAL GROWTH [J].
Alves, C. O. ;
Correa, F. J. S. A. ;
Figueiredo, G. M. .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2010, 2 (03) :409-417
[2]   EXISTENCE OF POSITIVE SOLUTIONS OF THE EQUATION -DELTA-U+A(X)U=U(N+2)/(N-2) IN RN [J].
BENCI, V ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) :90-117
[3]  
Cao DM, 1996, P ROY SOC EDINB A, V126, P443
[4]   MULTIPLICITY OF SOLUTIONS TO KIRCHHOFF TYPE EQUATIONS WITH CRITICAL SOBOLEV EXPONENT [J].
Chen, Peng ;
Liu, Xiaochun .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (01) :113-125
[5]  
DING WY, 1986, COMMUN MATH PHYS, V107, P331, DOI 10.1007/BF01209398
[6]   Monotonicity properties for ground states of the scalar field equation [J].
Felmer, Patricio L. ;
Quaas, Alexander ;
Tang, Moxun ;
Yu, Jianshe .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (01) :105-119
[7]   Study of a nonlinear Kirchhoff equation with non-homogeneous material [J].
Figueiredo, Giovany M. ;
Morales-Rodrigo, Cristian ;
Santos Junior, Joao R. ;
Suarez, Antonio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) :597-608
[8]   Ground states for nonlinear Kirchhoff equations with critical growth [J].
He, Xiaoming ;
Zou, Wenming .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (02) :473-500
[9]  
Huang Y., 2015, MATHEMATICS-BASEL, V7, P97
[10]   ON FINDING SOLUTIONS OF A KIRCHHOFF TYPE PROBLEM [J].
Huang, Yisheng ;
Liu, Zeng ;
Wu, Yuanze .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (07) :3019-3033