Fractional corner charges in a two-dimensional superlattice Bose-Hubbard model

被引:15
作者
Bibo, Julian [1 ,2 ]
Lovas, Izabella [1 ,2 ]
You, Yizhi [3 ]
Grusdt, Fabian [2 ,4 ,5 ,6 ,7 ]
Pollmann, Frank [1 ,2 ]
机构
[1] Tech Univ Munich, Dept Phys, T42, D-85748 Garching, Germany
[2] Munich Ctr Quantum Sci & Technol MQCST, Schellingstr 4, D-80799 Munich, Germany
[3] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[4] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
[5] Tech Univ Munich, Inst Adv Study, D-85748 Garching, Germany
[6] Ludwig Maximilians Univ Munchen, Dept Phys, Theresienstr 37, D-80333 Munich, Germany
[7] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys ASC, Theresienstr 37, D-80333 Munich, Germany
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
GAS;
D O I
10.1103/PhysRevB.102.041126
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study higher order topology in the presence of strong interactions in a two-dimensional, experimentally accessible superlattice Bose-Hubbard model with alternating hoppings and strong on-site repulsion. We evaluate the phase diagram of the model around half-filling using the density renormalization group ansatz and find two gapped phases separated by a gapless superfluid region. We demonstrate that the gapped states realize two distinct higher order symmetry protected topological phases, which are protected by a combination of charge conservation and C-4 lattice symmetry. The phases are distinguished in terms of a many-body topological invariant and a quantized, experimentally accessible fractional corner charge that is robust against arbitrary, symmetry preserving edge manipulations. We support our claims by numerically studying the full counting statistics of the corner charge, finding a sharp distribution peaked around the quantized values. Our results allow for a direct comparison with experiments and represent a confirmation of theoretically predicted higher order topology in a strongly interacting system. Experimentally, the fractional corner charge can be observed in ultracold atomic settings using state of the art quantum gas microscopy.
引用
收藏
页数:5
相关论文
共 53 条
[1]   Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms [J].
Aidelsburger, M. ;
Lohse, M. ;
Schweizer, C. ;
Atala, M. ;
Barreiro, J. T. ;
Nascimbene, S. ;
Cooper, N. R. ;
Bloch, I. ;
Goldman, N. .
NATURE PHYSICS, 2015, 11 (02) :162-166
[2]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[3]  
[Anonymous], ARXIV08042509
[4]  
Atala M, 2013, NAT PHYS, V9, P795, DOI [10.1038/nphys2790, 10.1038/NPHYS2790]
[5]   A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J].
Bakr, Waseem S. ;
Gillen, Jonathon I. ;
Peng, Amy ;
Foelling, Simon ;
Greiner, Markus .
NATURE, 2009, 462 (7269) :74-U80
[6]   Quantization of fractional corner charge in Cn-symmetric higher-order topological crystalline insulators [J].
Benalcazar, Wladimir A. ;
Li, Tianhe ;
Hughes, Taylor L. .
PHYSICAL REVIEW B, 2019, 99 (24)
[7]   Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
PHYSICAL REVIEW B, 2017, 96 (24)
[8]   Quantized electric multipole insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
SCIENCE, 2017, 357 (6346) :61-66
[9]   Engineering fragile topology in photonic crystals: Topological quantum chemistry of light [J].
Blanco de Paz, Maria ;
Vergniory, Maia G. ;
Bercioux, Dario ;
Garcia-Etxarri, Aitzol ;
Bradlyn, Barry .
PHYSICAL REVIEW RESEARCH, 2019, 1 (03)
[10]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964