Preparation of TiO2/SiO2 composite oxide and its photocatalytic degradation of rhodamine B

被引:33
作者
Yang, Zhi-Yuan [1 ]
Shen, Guang-Yu [1 ]
He, Yun-Peng [1 ]
Liu, Xiao-Xia [1 ]
Yang, Shui-Jin [1 ]
机构
[1] Hubei Normal Univ, Coll Chem & Chem Engn, Hubei Collaborat Innovat Ctr Rare Met Chem, Hubei Key Lab Pollutant Anal & Reuse Technol, Huangshi 435002, Hubei, Peoples R China
关键词
TiO2/SiO2; Composite oxide; Photocatalyst; Degradation; TITANIUM-DIOXIDE PHOTOCATALYSTS; EFFICIENT PHOTOCATALYST; SIO2/TIO2; NANOPARTICLES; MESOPOROUS STRUCTURE; TIO2; SILICA; NANOCOMPOSITE; FABRICATION; CATALYSTS; SPHERES;
D O I
10.1007/s10934-015-0114-7
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The composite semiconductor photocatalyst TiO2/SiO2 was prepared by template-hydrothermal method using carbon spheres as the template. The structural and optical properties of TiO2/SiO2 were characterized by XRD, SEM, BET, UV-Vis DRS, TG-DTA, PL techniques. The formation of hydroxyl radical on the surface of TiO2/SiO2 was studied with terephthalic acid as the probe molecule, combined with fluorescence technique. The results showed that the specific surface area of TiO2/SiO2 composite was 327.9 m(2)/g, and the specific surface area of TiO2/SiO2 was larger than that of pure TiO2. Photocatalytic degradation of rhodamine B showed that TiO2/SiO2 composite oxide under visible light illumination 40 min, the degradation rate was 98.6 % and the degradation rate of pure TiO2 was only 11.9 %. The apparent first-order rate constant of TiO2/SiO2 was 33 times that of pure TiO2 and more than 6 times that of P25 when the molar ratio of Ti to Si was 1:1 under visible light irradiation. Moreover, it's also as much as 5 times that of pure TiO2 and is more than 1 times that of P25 under UV light irradiation 25 min. Based on the experimental results, O-center dot(2) (-) and h(+) were suggested to be the major active species which was responsible for the degradation reaction. The increased photocatalytic activity of TiO2/SiO2 may be mainly attributed to effectively suppressing the recombination of hole/electron pairs. After the photocatalyst TiO2/SiO2 was reused 5 times, the degradation rate of rhodamine B could reach 89.2 % under visible light irradiation. Moreover, The composite semiconductor photocatalyst TiO2/SiO2 was selective towards the degradation of rhodamine B.
引用
收藏
页码:589 / 599
页数:11
相关论文
共 56 条
[1]   A Facile Approach to Fabrication of ZnO-TiO2 Hollow Spheres [J].
Agrawal, Mukesh ;
Gupta, Smrati ;
Pich, Andrij ;
Zafeiropoulos, Nikolaos E. ;
Stamm, Manfred .
CHEMISTRY OF MATERIALS, 2009, 21 (21) :5343-5348
[2]   New Generation Adsorbents for Water Treatment [J].
Ali, Imran .
CHEMICAL REVIEWS, 2012, 112 (10) :5073-5091
[3]   Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials [J].
Anderson, C ;
Bard, AJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (14) :2611-2616
[4]   SYNTHESIS OF HEXAGONALLY PACKED MESOPOROUS TIO2 BY A MODIFIED SOL-GEL METHOD [J].
ANTONELLI, DM ;
YING, JY .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1995, 34 (18) :2014-2017
[5]   Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation [J].
Asilturk, Meltem ;
Sayilkan, Funda ;
Arpac, Ertugrul .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2009, 203 (01) :64-71
[6]   Synthesis, characterization and photo catalytic degradation of aqueous eosin over Cr containing Ti/MCM-41 and SiO2-TiO2 catalysts using visible light [J].
Awate, S ;
Jacob, NE ;
Deshpande, SS ;
Gaydhankar, TR ;
Belhekar, AA .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2005, 226 (02) :149-154
[7]   Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase [J].
Bian, Zhenfeng ;
Zhu, Jian ;
Wang, Shaohua ;
Cao, Yong ;
Qian, Xufang ;
Li, Hexing .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (16) :6258-6262
[8]   Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation [J].
Chai, Bo ;
Peng, Tianyou ;
Mao, Jing ;
Li, Kan ;
Zan, Ling .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (48) :16745-16752
[9]   Fabrication of Tunable Core-Shell Structured TiO2 Mesoporous Microspheres Using Linear Polymer Polyethylene Glycol as Templates [J].
Cui, Yuming ;
Liu, Lei ;
Li, Bo ;
Zhou, Xingfu ;
Xu, Nanping .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (06) :2434-2439
[10]   Photoelectrocatalytic technologies for environmental applications [J].
Daghrir, R. ;
Drogui, P. ;
Robert, D. .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2012, 238 :41-52