Analytic solutions for the generalized complex Ginzburg-Landau equation in fiber lasers

被引:141
作者
Liu, Wenjun [1 ,2 ,3 ]
Yu, Weitian [1 ,2 ]
Yang, Chunyu [1 ,2 ]
Liu, Mengli [1 ,2 ]
Zhang, Yujia [1 ,2 ]
Lei, Ming [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
关键词
Soliton; Symbolic computation; Generalized complex Ginzburg-Landau equation; Modified Hirota method; SCHRODINGER-EQUATION; STABILITY; OSCILLATORS; IMPACT; STATES;
D O I
10.1007/s11071-017-3636-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Generalized complex Ginzburg-Landau equation (GCGLE) can be used to describe the nonlinear dynamic characteristics of fiber lasers and has riveted much attention of researchers in ultrafast optics. In this paper, analytic solutions of the GCGLE are obtained via the modified Hirota bilinear method. Kink waves and period waves are presented by selecting the relevant parameters. The influence of the related parameters on them is analyzed and studied. The results indicate that the desired pulses can be demonstrated by effectively controlling the dispersion and nonlinearity of fiber lasers.
引用
收藏
页码:2933 / 2939
页数:7
相关论文
共 37 条
[11]   Chirped-pulse oscillators: A unified standpoint [J].
Kalashnikov, V. L. ;
Apolonski, A. .
PHYSICAL REVIEW A, 2009, 79 (04)
[12]   Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment [J].
Kalashnikov, VL ;
Podivilov, E ;
Chernykh, A ;
Naumov, S ;
Fernandez, A ;
Graf, R ;
Apolonski, A .
NEW JOURNAL OF PHYSICS, 2005, 7
[13]   Dissipative Raman Solitons [J].
Kalashnikov, Vladimir L. ;
Sorokin, Evgeni .
OPTICS EXPRESS, 2014, 22 (24) :30118-30126
[14]   Exact solutions for generalized variable-coefficients Ginzburg-Landau equation: Application to Bose-Einstein condensates with multi-body interatomic interactions [J].
Kengne, E. ;
Lakhssassi, A. ;
Vaillancourt, R. ;
Liu, Wu-Ming .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
[15]   Modulational stability of solitary states in a lossy nonlinear electrical line [J].
Kengne, E. ;
Vaillancourt, R. .
CANADIAN JOURNAL OF PHYSICS, 2009, 87 (11) :1191-1202
[16]   2D Ginzburg-Landau System of Complex Modulation for Coupled Nonlinear Transmission Lines [J].
Kengne, E. ;
Vaillancourt, R. .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2009, 30 (07) :679-699
[17]   Bose-Einstein condensates in optical lattices: the cubic-quintic nonlinear Schrodinger equation with a periodic potential [J].
Kengne, E. ;
Vaillancourt, R. ;
Malomed, B. A. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2008, 41 (20)
[18]  
Kong LQ, 2017, NONLINEAR DYNAM, V87, P83, DOI 10.1007/s11071-016-3027-3
[19]   Some discussions about variable separation of nonlinear models using Riccati equation expansion method [J].
Kong, Liang-Qian ;
Dai, Chao-Qing .
NONLINEAR DYNAMICS, 2015, 81 (03) :1553-1561
[20]   Impact of higher-order effects on pulsating, erupting and creeping solitons [J].
Latas, S. C. V. ;
Ferreira, M. F. S. ;
Facao, M. V. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 104 (01) :131-137