Analytic solutions for the generalized complex Ginzburg-Landau equation in fiber lasers

被引:141
作者
Liu, Wenjun [1 ,2 ,3 ]
Yu, Weitian [1 ,2 ]
Yang, Chunyu [1 ,2 ]
Liu, Mengli [1 ,2 ]
Zhang, Yujia [1 ,2 ]
Lei, Ming [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
关键词
Soliton; Symbolic computation; Generalized complex Ginzburg-Landau equation; Modified Hirota method; SCHRODINGER-EQUATION; STABILITY; OSCILLATORS; IMPACT; STATES;
D O I
10.1007/s11071-017-3636-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Generalized complex Ginzburg-Landau equation (GCGLE) can be used to describe the nonlinear dynamic characteristics of fiber lasers and has riveted much attention of researchers in ultrafast optics. In this paper, analytic solutions of the GCGLE are obtained via the modified Hirota bilinear method. Kink waves and period waves are presented by selecting the relevant parameters. The influence of the related parameters on them is analyzed and studied. The results indicate that the desired pulses can be demonstrated by effectively controlling the dispersion and nonlinearity of fiber lasers.
引用
收藏
页码:2933 / 2939
页数:7
相关论文
共 37 条
[1]   CLASSICAL SOLUTIONS OF GENERAL GINZBURG-LANDAU EQUATIONS [J].
Chen, Shuhong ;
Guo, Boling .
ACTA MATHEMATICA SCIENTIA, 2016, 36 (03) :717-732
[2]  
Dai CQ, 2016, NONLINEAR DYNAM, V86, P999, DOI 10.1007/s11071-016-2941-8
[3]   Localized modes of the (n+1)-dimensional Schrodinger equation with power-law nonlinearities in PT-symmetric potentials [J].
Dai, Chao-Qing ;
Zhang, Xiao-Fei ;
Fan, Yan ;
Chen, Liang .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 43 :239-250
[4]   Active Curved Polymers Form Vortex Patterns on Membranes [J].
Denk, Jonas ;
Huber, Lorenz ;
Reithmann, Emanuel ;
Frey, Erwin .
PHYSICAL REVIEW LETTERS, 2016, 116 (17)
[5]   The studies on the motion of the sine-Gordon kink on a curved surface [J].
Dobrowolski, Tomasz .
ANNALEN DER PHYSIK, 2010, 522 (08) :574-583
[6]   Discrete Hirota equation: discrete Darboux transformation and new discrete soliton solutions [J].
Guo, Rui ;
Zhao, Xiao-Juan .
NONLINEAR DYNAMICS, 2016, 84 (04) :1901-1907
[7]   Modulation instability and dissipative ion-acoustic structures in collisional nonthermal electron-positron-ion plasma: solitary and shock waves [J].
Guo, Shimin ;
Mei, Liquan ;
He, Ya-Ling ;
Ma, Chenchen ;
Sun, Youfa .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)
[8]   Soliton amplification in gain medium governed by Ginzburg-Landau equation [J].
Huang, L. G. ;
Liu, W. J. ;
Huang, P. ;
Pan, N. ;
Lei, M. .
NONLINEAR DYNAMICS, 2015, 81 (03) :1133-1141
[9]   Analytic soliton solutions of cubic-quintic Ginzburg-Landau equation with variable nonlinearity and spectral filtering in fiber lasers [J].
Huang, Long-Gang ;
Pang, Li-Hui ;
Wong, Pring ;
Li, Yan-Qing ;
Bai, Shao-Yi ;
Lei, Ming ;
Liu, Wen-Jun .
ANNALEN DER PHYSIK, 2016, 528 (06) :493-503
[10]   Energy scalability of mode-locked oscillators: a completely analytical approach to analysis [J].
Kalashnikov, V. L. ;
Apolonski, A. .
OPTICS EXPRESS, 2010, 18 (25) :25757-25770