Index theory and non-commutative geometry - I. Higher families index theory

被引:18
|
作者
Benameur, MT
Heitsch, JL
机构
[1] Univ Metz, Dept Math, F-57045 Metz, France
[2] Univ Illinois, Chicago, IL 60680 USA
来源
K-THEORY | 2004年 / 33卷 / 02期
关键词
foliation; noncommutative geometry; index theorem; Haefliger cohomology;
D O I
10.1007/s10977-004-5929-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an index theorem for foliated manifolds. We do so by constructing a push forward map in cohomology for a K-oriented map from an arbitrary manifold to the space of leaves of an oriented foliation, and by constructing a Chern - Connes character from the K-theory of the compactly supported smooth functions on the holonomy groupoid of the foliation to the Haefliger cohomology of the foliation. Combining these with the Connes - Skandalis topological index map and the classical Chern character gives a commutative diagram from which the index theorem follows immediately.
引用
收藏
页码:151 / 183
页数:33
相关论文
共 50 条
  • [21] Quantum Logic and Non-Commutative Geometry
    P. A. Marchetti
    R. Rubele
    International Journal of Theoretical Physics, 2007, 46 : 49 - 62
  • [22] Field theory on a non-commutative plane: a non-perturbative study
    Hofheinz, F
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2004, 52 (05): : 391 - 445
  • [23] A non-perturbative approach to non-commutative scalar field theory
    Steinacker, H
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (03):
  • [24] A non-perturbative study of gauge theory on a non-commutative plane
    Bietenholz, W
    Hofheinz, F
    Nishimura, J
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (09):
  • [25] Non-commutative gauge theory of twisted D-branes
    Alekseev, AY
    Fredenhagen, S
    Quella, T
    Schomerus, V
    NUCLEAR PHYSICS B, 2002, 646 (1-2) : 127 - 157
  • [26] Fluxons and exact BPS solitons in non-commutative gauge theory
    Hashimoto, K
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (12):
  • [27] On the operator product expansion in non-commutative quantum field theory
    Zamora, F
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (05):
  • [28] Quantum (non-commutative) toric geometry: Foundations
    Katzarkov, Ludmil
    Lupercio, Ernesto
    Meersseman, Laurent
    Verjovsky, Alberto
    ADVANCES IN MATHEMATICS, 2021, 391
  • [29] Non-commutative Geometry in Massless and Massive Particles
    Pahlavani, M. R.
    Pourhassan, B.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (06) : 1195 - 1199
  • [30] Non-commutative Geometry in Massless and Massive Particles
    M. R. Pahlavani
    B. Pourhassan
    International Journal of Theoretical Physics, 2010, 49 : 1195 - 1199