Index theory and non-commutative geometry - I. Higher families index theory

被引:19
作者
Benameur, MT
Heitsch, JL
机构
[1] Univ Metz, Dept Math, F-57045 Metz, France
[2] Univ Illinois, Chicago, IL 60680 USA
关键词
foliation; noncommutative geometry; index theorem; Haefliger cohomology;
D O I
10.1007/s10977-004-5929-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an index theorem for foliated manifolds. We do so by constructing a push forward map in cohomology for a K-oriented map from an arbitrary manifold to the space of leaves of an oriented foliation, and by constructing a Chern - Connes character from the K-theory of the compactly supported smooth functions on the holonomy groupoid of the foliation to the Haefliger cohomology of the foliation. Combining these with the Connes - Skandalis topological index map and the classical Chern character gives a commutative diagram from which the index theorem follows immediately.
引用
收藏
页码:151 / 183
页数:33
相关论文
共 28 条
[1]  
[Anonymous], 1997, MONOGRAPHS MATH
[2]  
Atiyah M.F., 1976, ASTERISQUE, V32-33, P43
[3]  
ATIYAH MF, 1968, ANN MATH, V87, P484, DOI 10.2307/1970715
[4]  
ATIYAH MF, 1965, ANN MATH, V87, P564
[5]  
BAUM P, 1982, P SYMP PURE MATH, V38, P117
[6]  
Baum P., 1994, Contemp. Math., V167, P240, DOI [DOI 10.1090/CONM/167/1292018, 10.1090/conm/167/1292018]
[7]  
BAUM P, 2000, ENSEIGNEMENT MATH, V46, P3
[8]   Residues and homology for pseudodifferential operators on foliations [J].
Benameur, MT ;
Nistor, V .
MATHEMATICA SCANDINAVICA, 2004, 94 (01) :75-108
[9]   CYCLIC COHOMOLOGY, THE NOVIKOV-CONJECTURE AND HYPERBOLIC GROUPS [J].
CONNES, A ;
MOSCOVICI, H .
TOPOLOGY, 1990, 29 (03) :345-388
[10]   THE LONGITUDINAL INDEX THEOREM FOR FOLIATIONS [J].
CONNES, A ;
SKANDALIS, G .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (06) :1139-1183