SOLITON, MULTIPLE-LUMP, AND HYBRID SOLUTIONS FOR A (3+1)-DIMENSIONAL GENERALIZED KONOPELCHENKO-DUBROVSKY-KAUP-KUPERSHMIDT EQUATION IN PLASMA PHYSICS, FLUID MECHANICS, AND OCEAN DYNAMICS

被引:0
|
作者
Wang, Meng [1 ,2 ]
Tian, Bo [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Plasma physics; fluid mechanics; ocean dynamics; soliton solutions; multiple-lump solutions; hybrid solutions; WAVES; BREATHERS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in plasma physics, fluid mechanics, and ocean dynamics. Based on the existing bilinear form, we construct the N-soliton solutions, where N is a positive integer. Besides, we obtain the M-lump solutions via the long-wave limit to the N-soliton solutions, where M is a positive integer. Dark one-lump solutions are derived. Moreover, we take M = 2 and M = 3 to derive the two- and three-lump solutions, respectively. We find that the shapes and amplitudes of the dark one-, two-, and three-lump waves remain unchanged during propagation. Finally, three types of hybrid solutions are discussed, namely, the one-lump wave and one-soliton wave, the one-lump wave and two-soliton waves, and the two-lump waves and one-soliton wave.
引用
收藏
页数:14
相关论文
共 45 条
  • [1] The higher-order lump, breather and hybrid solutions for the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in fluid mechanics
    Zhang, Cai-Yin
    Gao, Yi-Tian
    Li, Liu-Qing
    Ding, Cui-Cui
    NONLINEAR DYNAMICS, 2020, 102 (03) : 1773 - 1786
  • [2] Solitons and breather waves for the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics
    Deng, Gao-Fu
    Gao, Yi-Tian
    Ding, Cui-Cui
    Su, Jing-Jing
    CHAOS SOLITONS & FRACTALS, 2020, 140
  • [3] Infinite conservation laws and new solutions of (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Zhang, Shi-Jie
    Bao, Taogetusang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (16):
  • [4] Fission and fusion solutions of the (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation: case of fluid mechanics and plasma physics
    Ma, Hongcai
    Gao, Yidan
    Deng, Aiping
    NONLINEAR DYNAMICS, 2022, 108 (04) : 4123 - 4137
  • [5] The higher-order lump, breather and hybrid solutions for the generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation in fluid mechanics
    Cai-Yin Zhang
    Yi-Tian Gao
    Liu-Qing Li
    Cui-Cui Ding
    Nonlinear Dynamics, 2020, 102 : 1773 - 1786
  • [6] Soliton molecules and some novel hybrid solutions for the (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Ma, Hongcai
    Cheng, Qiaoxin
    Deng, Aiping
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2020, 72 (09)
  • [7] Multi-peak and rational soliton propagations for (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup Kupershmidt model in fluid mechanics, ocean dynamics and plasma physics
    Ahmed, Sarfaraz
    Seadawy, Aly R. R.
    Rizvi, Syed T. R.
    Hameed, Majid
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (09)
  • [8] Bilinear form and Pfaffian solutions for a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics
    Cheng, Chong-Dong
    Tian, Bo
    Shen, Yuan
    Zhou, Tian-Yu
    NONLINEAR DYNAMICS, 2023, 111 (7) : 6659 - 6675
  • [9] Bilinear form and Pfaffian solutions for a (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt system in fluid mechanics and plasma physics
    Chong-Dong Cheng
    Bo Tian
    Yuan Shen
    Tian-Yu Zhou
    Nonlinear Dynamics, 2023, 111 : 6659 - 6675
  • [10] Comment on "Bilinear form, solitons, breathers and lumps of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics" [Eur. Phys. J. Plus (2020) 135:272]
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (08):