Stretched exponential relaxation in the mode-coupling theory for the Kardar-Parisi-Zhang equation

被引:32
作者
Colaiori, F [1 ]
Moore, MA [1 ]
机构
[1] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevE.63.057103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the mode-coupling theory for the Kardar-Parisi-Zhang equation in the strong-coupling regime, focusing on the long time properties. By a saddle point analysis of the mode-coupling equations, we derive exact results for the correlation function in the long-time limit-a limit that is hard to study using simulations. The correlation function at wave vector k in dimension d is found to behave asymptotically at time t as C(k,t) similar or equal to A/k(d+4-2z)(Btk(z))(gamma /z) exp[-(Btk(z))(1/z)], with gamma=(d-1)/2, A determined constant, and B a scale factor.
引用
收藏
页数:4
相关论文
共 32 条
[1]   SCALING EXPONENTS FOR KINETIC ROUGHENING IN HIGHER DIMENSIONS [J].
ALANISSILA, T ;
HJELT, T ;
KOSTERLITZ, JM ;
VENALAINEN, O .
JOURNAL OF STATISTICAL PHYSICS, 1993, 72 (1-2) :207-225
[2]  
Barabasi A-Ls, 1995, FRACTAL CONCEPTS SUR, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
[3]   Anomalous size dependence of relaxational processes [J].
Bunde, A ;
Havlin, S ;
Klafter, J ;
Graff, G ;
Shehter, A .
PHYSICAL REVIEW LETTERS, 1997, 78 (17) :3338-3341
[4]   TIME DECAY OF THE REMANENT MAGNETIZATION IN SPIN-GLASSES [J].
CHAMBERLIN, RV ;
MOZURKEWICH, G ;
ORBACH, R .
PHYSICAL REVIEW LETTERS, 1984, 52 (10) :867-870
[5]  
COLAIORI F, IN PRESS PHYS REV LE
[6]   DIRECTED POLYMERS IN A RANDOM MEDIUM - 1/D EXPANSION [J].
COOK, J ;
DERRIDA, B .
EUROPHYSICS LETTERS, 1989, 10 (03) :195-199
[7]   DIRECTED POLYMERS IN A RANDOM MEDIUM - 1/D EXPANSION AND THE N-TREE APPROXIMATION [J].
COOK, J ;
DERRIDA, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (09) :1523-1554
[8]   Stretched exponential relaxation on the hypercube and the glass transition [J].
de Almeida, RMC ;
Lemke, N ;
Campbell, IA .
EUROPEAN PHYSICAL JOURNAL B, 2000, 18 (03) :513-518
[9]   GENERALIZATIONS OF THE KARDAR-PARISI-ZHANG EQUATION [J].
DOHERTY, JP ;
MOORE, MA ;
KIM, JM ;
BRAY, AJ .
PHYSICAL REVIEW LETTERS, 1994, 72 (13) :2041-2044
[10]   NUMBER OF DISTINCT SITES VISITED BY A RANDOM-WALK [J].
DONSKER, MD ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (06) :721-747