Constructing Defect-Mediated CdS/g-C3N4 by an In-situ interlocking strategy for Cocatalyst-free photocatalytic H2 production

被引:26
作者
Wang, Jing [1 ,2 ]
Pan, Runhui [1 ,2 ]
Hao, Qi [1 ,2 ]
Gao, Ying [1 ,2 ]
Ye, Jilei [1 ,2 ]
Wu, Yuping [1 ,2 ,3 ]
van Ree, Teunis [4 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat oriented Chem Engn, Nanjing 211816, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, Sch Energy Sci & Engn, Nanjing 211816, Jiangsu, Peoples R China
[3] South East Univ, Sch Energy & Environm, Nanjing 211189, Jiangsu, Peoples R China
[4] Univ Venda, Dept Chem, ZA-0950 Thohoyandou, South Africa
基金
美国国家科学基金会;
关键词
Photocatalytic hydrogen production; Heterojunction; Necking particle; Interlocking; CdS-g-C3N4; HYDROGEN-PRODUCTION; CARBON NITRIDE; WATER; PERFORMANCE;
D O I
10.1016/j.apsusc.2022.153875
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The construction of heterojunction photocatalyst is an emerging strategy for realizing efficient photocatalytic hydrogen production, and the methodology of construction is critical for improving the interfacial charge carriers separation and transfer. A weakly coupling interface in a heterojunction leads to lower hydrogen production activity and stability. Herein, a facile strategy based on an in-situ interlocking reaction is developed to solve the interfacial contact issue. Litchi-like CdS is anchored at the defects of the g-C3N4 (CN) by an interlocking process, and the contact interface is further extended by some small necking CdS particles that assembled on the contact corner because of the surface tension. The as-formed CdS/g-C3N4 (CdS/CN) has a unique and strongly coupling interface, which can effectively improve interfacial separation and transfer kinetics of photogenerated charge carriers due to the synthetic advantages of interlocking binding, necking effect, and heterojunction. Impressively, the as-prepared CdS/CN photocatalyst yields over 36 folds of cocatalyst-free hydrogen generation rate than the pure CdS under the visible light irradiation. This work presents a case of practical study to realize the synthesis of defect-mediated heterojunction photocatalysts by a facile strategy.
引用
收藏
页数:9
相关论文
共 49 条
[31]   Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O [J].
Wang, Chujun ;
Zhao, Yilong ;
Xu, Hui ;
Li, Yifei ;
Wei, Yuechang ;
Liu, Jian ;
Zhao, Zhen .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 263
[32]  
Wang XC, 2009, NAT MATER, V8, P76, DOI [10.1038/nmat2317, 10.1038/NMAT2317]
[33]   Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution [J].
Wang, Xuehua ;
Wang, Xianghu ;
Huang, Jianfeng ;
Li, Shaoxiang ;
Meng, Alan ;
Li, Zhenjiang .
NATURE COMMUNICATIONS, 2021, 12 (01)
[34]   3D macropore carbon-vacancy g-C3N4 constructed using polymethylmethacrylate spheres for enhanced photocatalytic H2 evolution and CO2 reduction [J].
Wang, Xuewen ;
Li, Qiuchan ;
Gan, Lei ;
Ji, Xinfei ;
Chen, Fayun ;
Peng, Xinke ;
Zhang, Rongbin .
JOURNAL OF ENERGY CHEMISTRY, 2021, 53 :139-146
[35]   SrTaO2N-CaTaO2N solid solutions as efficient visible light active photocatalysts for water oxidation and reduction [J].
Wang, Yawei ;
Wei, Shunhang ;
Xu, Xiaoxiang .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 263
[36]   Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles [J].
Wang, Zheng ;
Inoue, Yasunobu ;
Hisatomi, Takashi ;
Ishikawa, Ryo ;
Wang, Qian ;
Takata, Tsuyoshi ;
Chen, Shanshan ;
Shibata, Naoya ;
Ikuhara, Yuichi ;
Domen, Kazunari .
NATURE CATALYSIS, 2018, 1 (10) :756-763
[37]   Photodepositing CdS on the Active Cyano Groups Decorated g-C3N4 in Z-Scheme Manner Promotes Visible-Light-Driven Hydrogen Evolution [J].
Wang, Zhipeng ;
Wang, Zilin ;
Zhu, Xiaodi ;
Ai, Changzhi ;
Zeng, Yamei ;
Shi, Wenyan ;
Zhang, Xidong ;
Zhang, Haoran ;
Si, Hewei ;
Li, Jin ;
Wang, Cai-Zhuang ;
Lin, Shiwei .
SMALL, 2021, 17 (39)
[38]   All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods [J].
Wolff, Christian M. ;
Frischmann, Peter D. ;
Schulze, Marcus ;
Bohn, Bernhard J. ;
Wein, Robin ;
Livadas, Panajotis ;
Carlson, Michael T. ;
Jaeckel, Frank ;
Feldmann, Jochen ;
Wuerthner, Frank ;
Stolarczyk, Jacek K. .
NATURE ENERGY, 2018, 3 (10) :862-869
[39]   Novel carbon and defects co-modified g-C3N4 for highly efficient photocatalytic degradation of bisphenol A under visible light [J].
Wu, Ming ;
He, Xin ;
Jing, Binghua ;
Wang, Teng ;
Wang, Chengyin ;
Qin, Yanlin ;
Ao, Zhimin ;
Wang, Shaobin ;
An, Taicheng .
JOURNAL OF HAZARDOUS MATERIALS, 2020, 384
[40]   Designing a 0D/2D S-Scheme Heterojunction over Polymeric Carbon Nitride for Visible-Light Photocatalytic Inactivation of Bacteria [J].
Xia, Pengfei ;
Cao, Shaowen ;
Zhu, Bicheng ;
Liu, Mingjin ;
Shi, Miusi ;
Yu, Jiaguo ;
Zhang, Yufeng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (13) :5218-5225