On the determinants of bitcoin returns: A LASSO approach

被引:128
作者
Panagiotidis, Theodore [1 ]
Stengos, Thanasis [2 ]
Vravosinos, Orestis [3 ]
机构
[1] Univ Macedonia, Thessaloniki, Greece
[2] Univ Guelph, Guelph, ON, Canada
[3] Barcelona Grad Sch Econ, Barcelona, Spain
关键词
Bitcoin; Cryptocurrency; Exchange rate; Returns; LASSO; REGRESSION SHRINKAGE; INTERDEPENDENCE; SELECTION;
D O I
10.1016/j.frl.2018.03.016
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We examine the significance of twenty-one potential drivers of bitcoin returns for the period 2010-2017 (2533 daily observations). Within a LASSO framework, we examine the effects of factors such as stock market returns, exchange rates, gold and oil returns, FED's and ECB's rates and internet trends on bitcoin returns for alternate time periods. Search intensity and gold returns emerge as the most important variables for bitcoin returns.
引用
收藏
页码:235 / 240
页数:6
相关论文
共 18 条
  • [1] [Anonymous], 2012, MULTINATIONAL FINANC
  • [2] THE INTRADAY INTERDEPENDENCE STRUCTURE BETWEEN UNITED-STATES AND JAPANESE EQUITY MARKETS
    BECKER, KG
    FINNERTY, JE
    TUCKER, AL
    [J]. JOURNAL OF FINANCIAL RESEARCH, 1992, 15 (01) : 27 - 37
  • [3] On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?
    Bouri, Elie
    Molnar, Peter
    Azzi, Georges
    Roubaud, David
    Hagfors, Lars Ivar
    [J]. FINANCE RESEARCH LETTERS, 2017, 20 : 192 - 198
  • [4] Bitcoin, gold and the dollar - A GARCH volatility analysis
    Dyhrberg, Anne Haubo
    [J]. FINANCE RESEARCH LETTERS, 2016, 16 : 85 - 92
  • [5] Least angle regression - Rejoinder
    Efron, B
    Hastie, T
    Johnstone, I
    Tibshirani, R
    [J]. ANNALS OF STATISTICS, 2004, 32 (02) : 494 - 499
  • [6] UNIT ROOT TESTS WITH WAVELETS
    Fan, Yanqin
    Gencay, Ramazan
    [J]. ECONOMETRIC THEORY, 2010, 26 (05) : 1305 - 1331
  • [7] No contagion, only interdependence: Measuring stock market comovements
    Forbes, KJ
    Rigobon, R
    [J]. JOURNAL OF FINANCE, 2002, 57 (05) : 2223 - 2261
  • [8] Volatility forecasting using global stochastic financial trends extracted from non-synchronous data
    Grigoryeva, Lyudmila
    Ortega, Juan-Pablo
    Peresetsky, Anatoly
    [J]. ECONOMETRICS AND STATISTICS, 2018, 5 (01) : 67 - 82
  • [9] Hastie T., 2015, Statistical Learning with Sparsity: The Lasso and Generalizations
  • [10] Hastie T, 2009, SPRINGER SERIES STAT, V2nd