airport detection;
hard example mining;
convolutional neural network;
region proposal network;
REMOTE-SENSING IMAGES;
SALIENCY;
D O I:
10.3390/rs9111198
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Deep convolutional neural network (CNN) achieves outstanding performance in the field of target detection. As one of the most typical targets in remote sensing images (RSIs), airport has attracted increasing attention in recent years. However, the essential challenge for using deep CNN to detect airport is the great imbalance between the number of airports and background examples in large-scale RSIs, which may lead to over-fitting. In this paper, we develop a hard example mining and weight-balanced strategy to construct a novel end-to-end convolutional neural network for airport detection. The initial motivation of the proposed method is that backgrounds contain an overwhelming number of easy examples and a few hard examples. Therefore, we design a hard example mining layer to automatically select hard examples by their losses, and implement a new weight-balanced loss function to optimize CNN. Meanwhile, the cascade design of proposal extraction and object detection in our network releases the constraint on input image size and reduces spurious false positives. Compared with geometric characteristics and low-level manually designed features, the hard example mining based network could extract high-level features, which is more robust for airport detection in complex environment. The proposed method is validated on a multi-scale dataset with complex background collected from Google Earth. The experimental results demonstrate that our proposed method is robust, and superior to the state-of-the-art airport detection models.
机构:
Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R ChinaGuangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
Li, Feiyang
Cai, Nian
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
Huizhou Guangdong Univ Technol IoT, Cooperat Innovat Inst Co Ltd, Huizhou 516025, Peoples R ChinaGuangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
Cai, Nian
Deng, Xueliang
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Electromech Engn, Guangzhou 510006, Peoples R ChinaGuangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
Deng, Xueliang
Li, Jiahao
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R ChinaGuangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
Li, Jiahao
Lin, Jianfa
论文数: 0引用数: 0
h-index: 0
机构:
Foshan Deeple Vis Technol Co Ltd, Foshan 528200, Guangdong, Peoples R ChinaGuangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
Lin, Jianfa
Wang, Han
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Electromech Engn, Guangzhou 510006, Peoples R ChinaGuangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
机构:
Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R ChinaGuangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
Li, Feiyang
Cai, Nian
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
Huizhou Guangdong Univ Technol IoT, Cooperat Innovat Inst Co Ltd, Huizhou 516025, Peoples R ChinaGuangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
Cai, Nian
Deng, Xueliang
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Electromech Engn, Guangzhou 510006, Peoples R ChinaGuangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
Deng, Xueliang
Li, Jiahao
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R ChinaGuangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
Li, Jiahao
Lin, Jianfa
论文数: 0引用数: 0
h-index: 0
机构:
Foshan Deeple Vis Technol Co Ltd, Foshan 528200, Guangdong, Peoples R ChinaGuangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
Lin, Jianfa
Wang, Han
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Electromech Engn, Guangzhou 510006, Peoples R ChinaGuangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China