Deep insight of the influence of Cu valence states in co-catalyst on CO2 photoreduction

被引:36
|
作者
Deng, Zesheng [1 ,2 ,3 ]
Hu, Songchang [1 ,2 ,3 ]
Ji, Jiahui [1 ,2 ,3 ]
Wu, Shiqun [1 ,2 ,3 ]
Xie, Haijiao [4 ]
Xing, Mingyang [1 ,2 ,3 ]
Zhang, Jinlong [1 ,2 ,3 ]
机构
[1] East China Univ Sci & Technol, Feringa Nobel Prize Scientist Joint Res Ctr, Frontiers Sci Ctr Materiobiol & Dynam Chem, Key Lab Adv Mat,Inst Fine Chem,Sch Chem & Mol Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Feringa Nobel Prize Scientist Joint Res Ctr, Frontiers Sci Ctr Materiobiol & Dynam Chem, Joint Int Res Lab Precis Chem & Mol Engn,Inst Fine, 130 Meilong Rd, Shanghai 200237, Peoples R China
[3] East China Univ Sci & Technol, Shanghai Engn Res Ctr Multimedia Environm Catalysi, 130 Meilong Rd, Shanghai 200237, Peoples R China
[4] Hangzhou Yanqu Informat Technol Co Ltd, Y2,2nd Floor,Bldg 2, Xixi Legu Creat Pioneering Pk, Hangzhou 310003, Zhejiang, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2022年 / 316卷
基金
中国国家自然科学基金;
关键词
CO2; photoreduction; Production selectivity; Cu valence state; CO desorption; RAY PHOTOELECTRON-SPECTROSCOPY; PHOTOCATALYTIC REDUCTION; CONVERSION; DEFECTS;
D O I
10.1016/j.apcatb.2022.121621
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cu is widely used to prepare high-value products in photocatalytic CO(2 )reduction reaction (CO2PR). The valence state of transition metals usually has a great impact on the catalytic process. However, the research on Cu valence in CO2PR is lack for its complex valence change. In current work, Cux/P25 with stable Cu valence composition in CO2PR is prepared. The results show that Cu is composed of Cu-0 and Cu2O, and their proportions change regularly as Cu loading changing, which are linearly related to the selectivity of the corresponding products of CO2PR. Combined with thermodynamic and kinetic analysis, the CO adsorption and activation on the surface of Cu-0 and Cu2O are considered to be the key to determine the product of CO2PR, which is further confirmed by DFT calculation. Cu0 and Cu2O are proved to be active site of producing CH4 and CO, respectively. In this case, a reference for the study of highly selectivity Cu based photocatalysts is provided.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination
    Zhu, Wei
    Zhang, Chufeng
    Li, Qin
    Xiong, Likun
    Chen, Rongxiang
    Wan, Xiaobing
    Wang, Zhen
    Chen, Wei
    Deng, Zhao
    Peng, Yang
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 238 : 339 - 345
  • [12] Coupling of Cu Catalyst and Phosphonated Ru Complex Light Absorber with TiO2 as Bridge to Achieve Superior Visible Light CO2 Photoreduction
    Xu, Rongjie
    Xu, Hua
    Ning, Shangbo
    Zhang, Qiqi
    Yang, Zhongshan
    Ye, Jinhua
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2020, 26 (06) : 470 - 478
  • [13] Interfacial Photoreduction of Supercritical CO2 by an Aqueous Catalyst
    Mendez, Manuel A.
    Voyame, Patrick
    Girault, Hubert H.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (32) : 7391 - 7394
  • [14] Mechanistic Understanding on the Role of Cu Species over the CuOx/TiO2 Catalyst for CO2 Photoreduction
    Wang, Yujie
    Deng, Shiheng
    Liu, Boping
    Jin, Yulong
    ACS OMEGA, 2020, 5 (29): : 18050 - 18063
  • [15] Significant CO2 photoreduction on a high-entropy oxynitride
    Akrami, Saeid
    Edalati, Parisa
    Shundo, Yu
    Watanabe, Motonori
    Ishihara, Tatsumi
    Fuji, Masayoshi
    Edalati, Kaveh
    CHEMICAL ENGINEERING JOURNAL, 2022, 449
  • [16] Covalent Organic Frameworks as Emerging Platforms for CO2 Photoreduction
    Nguyen, Ha L.
    Alzamly, Ahmed
    ACS CATALYSIS, 2021, 11 (15) : 9809 - 9824
  • [17] Proton Turnover Dominated Cascade Route for CO2 Photoreduction
    Xie, Zhongkai
    Luo, Hongyun
    Xu, Shengjie
    Li, Longhua
    Shi, Weidong
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (17)
  • [18] Metal halide perovskites as an emergent catalyst for CO2 photoreduction: a minireview
    Mendez-Galvan, Melissa
    Alcantar-Vazquez, Brenda
    Diaz, Gabriela
    Ibarra, Ilich A.
    Lara-Garcia, Hugo A.
    REACTION CHEMISTRY & ENGINEERING, 2021, 6 (05) : 828 - 838
  • [19] Review and Analysis of CO2 Photoreduction Kinetics
    Thompson, Warren Athol
    Fernandez, Eva Sanchez
    Maroto-Valer, M. Mercedes
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (12): : 4677 - 4692
  • [20] Unveiling CuO role in CO2 photoreduction process - Catalyst or reactant?
    Nogueira, Andre E.
    da Silva, Gelson T. S. T.
    Oliveira, Jessica A.
    Torres, Juliana A.
    da Silva, Mitchell G. S.
    Carmo, Marcelo
    Ribeiro, Caue
    CATALYSIS COMMUNICATIONS, 2020, 137