On Ramanujan's cubic transformation formula for 2F1(1/3, 2/3; 1; z)

被引:29
作者
Chan, HH [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
关键词
D O I
10.1017/S0305004198002643
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this paper is to provide two new proofs of Ramanujan's cubic transformation formula for F-2(1)(1/3, 2/3; 1; z) (see (1.8) below). For our first proof, we have to develop Ramanujan's elliptic functions in the theory of signature 3 using a different approach from that given in a recent paper by Berndt, Bhargava and Garvan. For our second proof, we use two of Goursat's formulas.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 13 条
[1]  
[Anonymous], 1984, ENSEIGN MATH
[2]  
Berndt B. C., 1989, Ramanujan's Notebooks
[3]  
Berndt B. C., 1991, Ramanujan's Notebooks
[4]  
BERNDT BC, RAMANUJAN MODULAR J
[5]  
BERNDT BC, 1995, T AM MATH SOC, V347, P4136
[6]   SOME CUBIC MODULAR IDENTITIES OF RAMANUJAN [J].
BORWEIN, JM ;
BORWEIN, PB ;
GARVAN, FG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 343 (01) :35-47
[7]   A CUBIC COUNTERPART OF JACOBIS IDENTITY AND THE AGM [J].
BORWEIN, JM ;
BORWEIN, PB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :691-701
[8]  
CHAN HH, 1995, ACTA ARITH, V73, P343
[9]  
COPSON ET, 1948, THEORY FUNCTIONS COM
[10]  
Goursat E., 1881, ANN SCI ECOLE NORM S, V10, P3