Extending quantum probabilistic error cancellation by noise scaling

被引:40
作者
Mari, Andrea [1 ]
Shammah, Nathan [1 ]
Zeng, William J. [1 ,2 ]
机构
[1] Unitary Fund, Walnut, CA 91789 USA
[2] Goldman Sachs & Co, New York, NY 10282 USA
关键词
CORRECTING CODES;
D O I
10.1103/PhysRevA.104.052607
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a general framework for quantum error mitigation that combines and generalizes two techniques: probabilistic error cancellation (PEC) and zero-noise extrapolation (ZNE). Similar to PEC, the proposed method represents ideal operations as linear combinations of noisy operations that are implementable on hardware. However, instead of assuming a fixed level of hardware noise, we extend the set of implementable operations by noise scaling. By construction, this method encompasses both PEC and ZNE as particular cases and allows us to investigate a larger set of hybrid techniques. For example, gate extrapolation can be used to implement PEC without requiring knowledge of the device's noise model, e.g., avoiding gate-set tomography. Alternatively, probabilistic error reduction can be used to estimate expectation values at intermediate virtual noise strengths (below the hardware level), leading to partially mitigated results at a lower sampling cost. Moreover, multiple results obtained with different noise-reduction factors can be further postprocessed with ZNE to better approximate the zero-noise limit.
引用
收藏
页数:12
相关论文
共 27 条
[1]   FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT ERROR RATE [J].
Aharonov, Dorit ;
Ben-Or, Michael .
SIAM JOURNAL ON COMPUTING, 2008, 38 (04) :1207-1282
[2]  
Bultrini D., ARXIV210713470
[3]   Multi-exponential error extrapolation and combining error mitigation techniques for NISQ applications [J].
Cai, Zhenyu .
NPJ QUANTUM INFORMATION, 2021, 7 (01)
[4]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[5]  
Czarnik P., ARXIV200510189
[6]   Cloud Quantum Computing of an Atomic Nucleus [J].
Dumitrescu, E. F. ;
McCaskey, A. J. ;
Hagen, G. ;
Jansen, G. R. ;
Morris, T. D. ;
Papenbrock, T. ;
Pooser, R. C. ;
Dean, D. J. ;
Lougovski, P. .
PHYSICAL REVIEW LETTERS, 2018, 120 (21)
[7]   Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation [J].
Endo, Suguru ;
Cai, Zhenyu ;
Benjamin, Simon C. ;
Yuan, Xiao .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (03)
[8]   Practical Quantum Error Mitigation for Near-Future Applications [J].
Endo, Suguru ;
Benjamin, Simon C. ;
Li, Ying .
PHYSICAL REVIEW X, 2018, 8 (03)
[9]   Digital zero noise extrapolation for quantum error mitigation [J].
Giurgica-Tiron, Tudor ;
Hindy, Yousef ;
LaRose, Ryan ;
Mari, Andrea ;
Zeng, William J. .
IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20), 2020, :306-316
[10]   Zero-noise extrapolation for quantum-gate error mitigation with identity insertions [J].
He, Andre ;
Nachman, Benjamin ;
de Jong, Wibe A. ;
Bauer, Christian W. .
PHYSICAL REVIEW A, 2020, 102 (01)