New Robust Stability and Stabilizability Conditions for Linear Parameter Time Varying polytopic systems

被引:0
作者
Aouani, N. [1 ]
Salhi, S. [1 ]
Garcia, G. [2 ]
Ksouri, M. [1 ]
机构
[1] Natl Sch Engn Tunis, Res Unit Syst Anal & Control, BP 37, Tunis 1002, Le Belvedere, Tunisia
[2] Univ Toulouse 1, CNRS, LAAS, F-31042 Toulouse, France
来源
2009 3RD INTERNATIONAL CONFERENCE ON SIGNALS, CIRCUITS AND SYSTEMS (SCS 2009) | 2009年
关键词
LPV systems; polytopic uncertainty; robust control; synthesis; static state feedback; CONTROLLER SYNTHESIS; LYAPUNOV FUNCTIONS; LPV SYSTEMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Uncertain Linear Parameter Varying (LPV) systems have a long history of interest in the control community. Those where uncertainties depend on time are more and more treated, for either analysis or design problems. The main issue for large part of them is how to represent the derivative of the time varying parameter. We give in this sense a novel representation of the time derivative of the parameter expressed itself under a polytopic structure. Based on that representation, new sufficient conditions for stability and stabilizability are derived, formulated in terms of LMIs parameterized through a real parameter a. A state feedback synthesis is investigated. The influence of the parameter alpha is highlighted by a numerical example. Its impact on the stabilizability's regions delimited by the plane is illustrated by a diagram at the end of the article.
引用
收藏
页码:817 / +
页数:2
相关论文
共 50 条
[1]   Stability and stabilisation for time-varying polytopic quadratic systems [J].
Chen, Fu ;
Kang, Shuigui ;
Ji, Lixia ;
Zhang, Xiuzhen .
INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (02) :373-383
[2]   Robust stability analysis of time-varying parameter polynomial-dependent linear systems [J].
Na, Li ;
Zhao, Ke-you ;
Yuan, Mingting .
2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, :719-723
[3]   On robust stability and set invariance of switched linear parameter varying systems [J].
Seron, Maria M. ;
De Dona, Jose A. .
INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (12) :2588-2597
[4]   A fast ellipsoidal MPC scheme for discrete-time polytopic linear parameter varying systems [J].
Casavola, Alessandro ;
Famularo, Domenico ;
Franze, Giuseppe ;
Garone, Emanuele .
AUTOMATICA, 2012, 48 (10) :2620-2626
[5]   Stability results for linear parameter varying and switching systems [J].
Blanchini, Franco ;
Miani, Stefano ;
Savorgnan, Carlo .
AUTOMATICA, 2007, 43 (10) :1817-1823
[6]   Robust Stability Analysis of Linear Parameter-Varying Systems With Markov Jumps [J].
Vargas, Alessandro N. ;
Agulhari, Cristiano M. ;
Oliveira, Ricardo C. L. F. ;
Preciado, Victor M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (11) :6234-6239
[7]   Robust stability and robust stabilizability for periodically switched linear systems [J].
Do Duc Thuan ;
Le Van Ngoc .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 :112-130
[8]   A receding horizon scheme for discrete-time polytopic linear parameter varying systems in networked architectures [J].
Franze, Giuseppe ;
Lucia, Walter ;
Tedesco, Francesco .
EUROPEAN WORKSHOP ON ADVANCED CONTROL AND DIAGNOSIS, PTS 1-8, 2014, 570
[9]   A new LMI condition for the robust stability of linear time-varying systems [J].
Montagner, VF ;
Peres, PLD .
42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, :6133-6138
[10]   A Survey of Output Feedback Robust MPC for Linear Parameter Varying Systems [J].
Ping, Xubin ;
Hu, Jianchen ;
Lin, Tingyu ;
Ding, Baocang ;
Wang, Peng ;
Li, Zhiwu .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (10) :1717-1751