New Robust Stability and Stabilizability Conditions for Linear Parameter Time Varying polytopic systems

被引:0
|
作者
Aouani, N. [1 ]
Salhi, S. [1 ]
Garcia, G. [2 ]
Ksouri, M. [1 ]
机构
[1] Natl Sch Engn Tunis, Res Unit Syst Anal & Control, BP 37, Tunis 1002, Le Belvedere, Tunisia
[2] Univ Toulouse 1, CNRS, LAAS, F-31042 Toulouse, France
来源
2009 3RD INTERNATIONAL CONFERENCE ON SIGNALS, CIRCUITS AND SYSTEMS (SCS 2009) | 2009年
关键词
LPV systems; polytopic uncertainty; robust control; synthesis; static state feedback; CONTROLLER SYNTHESIS; LYAPUNOV FUNCTIONS; LPV SYSTEMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Uncertain Linear Parameter Varying (LPV) systems have a long history of interest in the control community. Those where uncertainties depend on time are more and more treated, for either analysis or design problems. The main issue for large part of them is how to represent the derivative of the time varying parameter. We give in this sense a novel representation of the time derivative of the parameter expressed itself under a polytopic structure. Based on that representation, new sufficient conditions for stability and stabilizability are derived, formulated in terms of LMIs parameterized through a real parameter a. A state feedback synthesis is investigated. The influence of the parameter alpha is highlighted by a numerical example. Its impact on the stabilizability's regions delimited by the plane is illustrated by a diagram at the end of the article.
引用
收藏
页码:817 / +
页数:2
相关论文
共 50 条
  • [1] Stability and stabilisation for time-varying polytopic quadratic systems
    Chen, Fu
    Kang, Shuigui
    Ji, Lixia
    Zhang, Xiuzhen
    INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (02) : 373 - 383
  • [2] Robust stability analysis of time-varying parameter polynomial-dependent linear systems
    Na, Li
    Zhao, Ke-you
    Yuan, Mingting
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 719 - 723
  • [3] On robust stability and set invariance of switched linear parameter varying systems
    Seron, Maria M.
    De Dona, Jose A.
    INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (12) : 2588 - 2597
  • [4] A fast ellipsoidal MPC scheme for discrete-time polytopic linear parameter varying systems
    Casavola, Alessandro
    Famularo, Domenico
    Franze, Giuseppe
    Garone, Emanuele
    AUTOMATICA, 2012, 48 (10) : 2620 - 2626
  • [5] Stability results for linear parameter varying and switching systems
    Blanchini, Franco
    Miani, Stefano
    Savorgnan, Carlo
    AUTOMATICA, 2007, 43 (10) : 1817 - 1823
  • [6] Robust stability and robust stabilizability for periodically switched linear systems
    Do Duc Thuan
    Le Van Ngoc
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 : 112 - 130
  • [7] Robust Stability Analysis of Linear Parameter-Varying Systems With Markov Jumps
    Vargas, Alessandro N.
    Agulhari, Cristiano M.
    Oliveira, Ricardo C. L. F.
    Preciado, Victor M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (11) : 6234 - 6239
  • [8] A receding horizon scheme for discrete-time polytopic linear parameter varying systems in networked architectures
    Franze, Giuseppe
    Lucia, Walter
    Tedesco, Francesco
    EUROPEAN WORKSHOP ON ADVANCED CONTROL AND DIAGNOSIS, PTS 1-8, 2014, 570
  • [9] A new LMI condition for the robust stability of linear time-varying systems
    Montagner, VF
    Peres, PLD
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 6133 - 6138
  • [10] A Survey of Output Feedback Robust MPC for Linear Parameter Varying Systems
    Ping, Xubin
    Hu, Jianchen
    Lin, Tingyu
    Ding, Baocang
    Wang, Peng
    Li, Zhiwu
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (10) : 1717 - 1751