Hydrostatics and dynamical large deviations of boundary driven gradient symmetric exclusion processes

被引:20
作者
Farfan, J. [2 ]
Landim, C. [1 ,2 ]
Mourragui, M. [1 ]
机构
[1] Univ Rouen, CNRS, LMRS, UMR 6085, F-76801 St Etienne, France
[2] Inst Matematica Pura & Aplicada, BR-22460 Rio De Janeiro, Brazil
关键词
Boundary driven exclusion processes; Stationary nonequilibrium states; Hydrostatics; Fick's law; Large deviations; HYDRODYNAMIC SCALING LIMIT; STEADY-STATE; PARTICLE; EQUILIBRIUM; RELAXATION; SYSTEM;
D O I
10.1016/j.spa.2010.11.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the hydrostatics of boundary driven gradient exclusion processes, Fick's law and we present a simple proof of the dynamical large deviations principle which holds in any dimension. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:725 / 758
页数:34
相关论文
共 22 条
[11]   HYDRODYNAMICS OF STATIONARY NONEQUILIBRIUM STATES FOR SOME STOCHASTIC LATTICE GAS MODELS [J].
EYINK, G ;
LEBOWITZ, JL ;
SPOHN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :253-283
[12]   LATTICE GAS MODELS IN CONTACT WITH STOCHASTIC RESERVOIRS - LOCAL EQUILIBRIUM AND RELAXATION TO THE STEADY-STATE [J].
EYINK, G ;
LEBOWITZ, JL ;
SPOHN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 140 (01) :119-131
[13]  
KIPNIS C, 1995, ANN I H POINCARE-PR, V31, P191
[14]   HYDRODYNAMICS AND LARGE DEVIATION FOR SIMPLE EXCLUSION PROCESSES [J].
KIPNIS, C ;
OLLA, S ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (02) :115-137
[15]  
KIPNIS C, 1999, HYDRODYNAMIC LIMIT I
[16]   Driven tracer particle in one dimensional symmetric simple exclusion [J].
Landim, C ;
Olla, S ;
Volchan, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (02) :287-307
[17]  
LANDIM C., 2002, THEOR PROBAB APPL, V45, P604
[18]   Lattice Gas Model in Random Medium and Open Boundaries: Hydrodynamic and Relaxation to the Steady State [J].
Mourragui, Mustapha ;
Orlandi, Enza .
JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (04) :685-714
[19]   Large deviations for the symmetric simple exclusion process in dimensions d≥3 [J].
Quastel, J ;
Rezakhanlou, F ;
Varadhan, SRS .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (01) :1-84
[20]   LARGE DEVIATIONS FROM A HYDRODYNAMIC SCALING LIMIT FOR A NONGRADIENT SYSTEM [J].
QUASTEL, J .
ANNALS OF PROBABILITY, 1995, 23 (02) :724-742