107 Gb/s Ultra-High Speed, Surface-Normal Electroabsorption Modulator Devices

被引:19
作者
Grillanda, Stefano [1 ]
Raybon, Gregory [2 ]
Adamiecki, Andrew [2 ]
Fontaine, Nicolas [2 ]
Earnshaw, Mark [1 ]
Hu, Ting-Chen [1 ]
Neilson, David [2 ]
Basavanhally, Nagesh [1 ]
Low, Yee [1 ]
Safar, Hugo [1 ]
Cappuzzo, Mark [1 ]
Kopf, Rose [1 ]
Tate, Alaric [1 ]
机构
[1] Nokia, Bell Labs, Murray Hill, NJ 07974 USA
[2] Nokia, Bell Labs, Holmdel, NJ 07733 USA
关键词
Optical polarization; Optical transmitters; Optical modulation; Optical reflection; Optical fibers; Electrooptic modulators; integrated opto-electronics; optical arrays; optical transmitters; optoelectronic devices; photonic integrated circuits; V-PP; COMPACT; ENERGY;
D O I
10.1109/JLT.2019.2951290
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Short reach communication systems, such as datacenters and access networks, exhibit steep capacity growth and require opto-electronic technologies with small size, low complexity, and low power consumption. Here, we demonstrate large-scale arrays of reflective surface normal electroabsorption modulators (SNEAMs). With very small active volumes, SNEAMs enable ultra-wide electro-optic bandwidth (>>65 GHz). We show modulation at 25 Gbit/s with 1 V-pp drive voltage on packaged SNEAMs and ultra-high bit-rate modulation at 107 Gbit/s with bare chips. These modulators are polarization-independent and have very low total input/output coupling loss of 0.7 dB to single-mode-fibers. We package SNEAM arrays with arrayed waveguide gratings into wavelength division multiplexing transmitters. Due to their broad wavelength range of modulation, SNEAMs do not need power hungry wavelength tuning or locking systems. Future co-integration of SNEAM arrays with low-power electronic driver arrays will enable high-capacity, low-power electro-optic engines.
引用
收藏
页码:804 / 810
页数:7
相关论文
共 30 条
[1]  
[Anonymous], P OPT FIB COMM C NAT
[2]   Development of a large high-performance 2-D array of GaAs-AlGaAs multiple quantum-well modulators [J].
Arad, U ;
Redmard, E ;
Shamay, M ;
Averboukh, A ;
Levit, S ;
Efron, U .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2003, 15 (11) :1531-1533
[3]   Surface-Normal Ge/SiGe Asymmetric Fabry-Perot Optical Modulators Fabricated on Silicon Substrates [J].
Audet, Ross M. ;
Edwards, Elizabeth H. ;
Balram, Krishna C. ;
Claussen, Stephanie A. ;
Schaevitz, Rebecca K. ;
Tasyurek, Emel ;
Rong, Yiwen ;
Fei, Edward I. ;
Kamins, Theodore I. ;
Harris, James S. ;
Miller, David A. B. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2013, 31 (24) :3995-4003
[4]   MILLIMETER-WAVE ASYMMETRIC FABRY-PEROT MODULATORS [J].
BARRON, CC ;
MAHON, CJ ;
THIBEAULT, BJ ;
WANG, G ;
JIANG, W ;
COLDREN, LA ;
BOWERS, JE .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1995, 31 (08) :1484-1493
[5]   MULTIPLE QUANTUM-WELL REFLECTION MODULATOR [J].
BOYD, GD ;
MILLER, DAB ;
CHEMLA, DS ;
MCCALL, SL ;
GOSSARD, AC ;
ENGLISH, JH .
APPLIED PHYSICS LETTERS, 1987, 50 (17) :1119-1121
[6]   Measurement and modeling of ultrafast carrier dynamics and transport in germanium/silicon-germanium quantum wells [J].
Claussen, Stephanie A. ;
Tasyurek, Emel ;
Roth, Jonathan E. ;
Miller, David A. B. .
OPTICS EXPRESS, 2010, 18 (25) :25596-25607
[7]   Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator [J].
Dong, Po ;
Liao, Shirong ;
Feng, Dazeng ;
Liang, Hong ;
Zheng, Dawei ;
Shafiiha, Roshanak ;
Kung, Cheng-Chih ;
Qian, Wei ;
Li, Guoliang ;
Zheng, Xuezhe ;
Krishnamoorthy, Ashok V. ;
Asghari, Mehdi .
OPTICS EXPRESS, 2009, 17 (25) :22484-22490
[8]   Ge/SiGe asymmetric Fabry-Perot quantum well electroabsorption modulators [J].
Edwards, Elizabeth H. ;
Audet, Ross M. ;
Fei, Edward T. ;
Claussen, Stephanie A. ;
Schaevitz, Rebecca K. ;
Tasyurek, Emel ;
Rong, Yiwen ;
Kamins, Theodore I. ;
Harris, James S. ;
Miller, David A. B. .
OPTICS EXPRESS, 2012, 20 (28) :29164-29173
[9]   InP Mach-Zehnder Modulator Platform for 10/40/100/200-Gb/s Operation [J].
Griffin, Robert A. ;
Jones, Stephen K. ;
Whitbread, Neil ;
Heck, Susannah C. ;
Langley, Lloyd N. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (06)
[10]   Ring resonator modulators in silicon for interchip photonic links [J].
Oracle Labs., Oracle, San Diego, CA 92121, United States .
IEEE J Sel Top Quantum Electron, 2013, 6