Modelling and sample size reestimation for longitudinal count data with incomplete follow up

被引:9
作者
Asendorf, Thomas [1 ]
Henderson, Robin [2 ]
Schmidli, Heinz [3 ]
Friede, Tim [1 ]
机构
[1] Univ Med Ctr Gottingen, Dept Med Stat, Humboldtallee 32, D-37073 Gottingen, Germany
[2] Univ Newcastle, Sch Math & Stat, Newcastle Upon Tyne, Tyne & Wear, England
[3] Novartis Pharma AG, Stat Methodol, Basel, Switzerland
关键词
Adaptive design; lesion counts; sample size reestimation; negative binomial; discrete autoregressive process; time dependent; REMITTING MULTIPLE-SCLEROSIS; PLACEBO-CONTROLLED TRIAL; CLINICAL-TRIALS; MRI; SURROGATE; GAMMA; MS; EFFICIENCY; MIXTURES;
D O I
10.1177/0962280217715664
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
We consider modelling and inference as well as sample size estimation and reestimation for clinical trials with longitudinal count data as outcomes. Our approach is general but is rooted in design and analysis of multiple sclerosis trials where lesion counts obtained by magnetic resonance imaging are important endpoints. We adopt a binomial thinning model that allows for correlated counts with marginal Poisson or negative binomial distributions. Methods for sample size planning and blinded sample size reestimation for randomised controlled clinical trials with such outcomes are developed. The models and approaches are applicable to data with incomplete observations. A simulation study is conducted to assess the effectiveness of sample size estimation and blinded sample size reestimation methods. Sample sizes attained through these procedures are shown to maintain the desired study power without inflating the type I error. Data from a recent trial in patients with secondary progressive multiple sclerosis illustrate the modelling approach.
引用
收藏
页码:117 / 133
页数:17
相关论文
共 47 条
[1]  
AlOsh MA., 1987, Journal of Time Series Analysis, V8, P261, DOI [10.1111/j.1467-9892.1987.tb00438.x, DOI 10.1111/JTSA.1987.8.ISSUE-3]
[2]   MRI-based clinical trials in relapsing-remitting MS: new sample size calculations based on a longitudinal model [J].
Altman, R. M. ;
Petkau, A. J. ;
Vrecko, D. ;
Smith, A. .
MULTIPLE SCLEROSIS JOURNAL, 2012, 18 (11) :1600-1608
[3]   A longitudinal model for magnetic resonance imaging lesion count data in multiple sclerosis patients [J].
Altman, Rachel MacKay ;
Petkau, A. John ;
Vrecko, Dean ;
Smith, Alex .
STATISTICS IN MEDICINE, 2012, 31 (05) :449-469
[4]   Application of hidden Markov models to multiple sclerosis lesion count data [J].
Altman, RM ;
Petkau, AJ .
STATISTICS IN MEDICINE, 2005, 24 (15) :2335-2344
[5]   AN INTEGER-VALUED PTH-ORDER AUTOREGRESSIVE STRUCTURE (INAR(P)) PROCESS [J].
ALZAID, AA ;
ALOSH, M .
JOURNAL OF APPLIED PROBABILITY, 1990, 27 (02) :314-324
[6]  
[Anonymous], 2010, GUID IND AD DES CLIN
[7]   Ibudilast in relapsing-remitting multiple sclerosis A neuroprotectant? [J].
Barkhof, F. ;
Hulst, H. E. ;
Drulovic, J. ;
Uitdehaag, B. M. J. ;
Matsuda, K. ;
Landin, R. .
NEUROLOGY, 2010, 74 (13) :1033-1040
[8]   Nonparametric Bayes modelling of count processes [J].
Canale, Antonio ;
Dunson, David B. .
BIOMETRIKA, 2013, 100 (04) :801-816
[9]   Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial [J].
Chataway, Jeremy ;
Schuerer, Nadine ;
Alsanousi, Ali ;
Chan, Dennis ;
MacManus, David ;
Hunter, Kelvin ;
Anderson, Val ;
Bangham, Charles R. M. ;
Clegg, Shona ;
Nielsen, Casper ;
Fox, Nick C. ;
Wilkie, David ;
Nicholas, Jennifer M. ;
Calder, Virginia L. ;
Greenwood, John ;
Frost, Chris ;
Nicholas, Richard .
LANCET, 2014, 383 (9936) :2213-2221
[10]   A novel adaptive design strategy increases the efficiency of clinical trials in secondary progressive multiple sclerosis [J].
Chataway, Jeremy ;
Nicholas, Richard ;
Todd, Susan ;
Miller, David H. ;
Parsons, Nicholas ;
Valdes-Marquez, Elsa ;
Stallard, Nigel ;
Friede, Tim .
MULTIPLE SCLEROSIS JOURNAL, 2011, 17 (01) :81-88