Proximity of the Superconducting Dome and the Quantum Critical Point in the Two-Dimensional Hubbard Model

被引:49
作者
Yang, S. -X. [1 ]
Fotso, H. [1 ]
Su, S. -Q. [1 ,2 ]
Galanakis, D. [1 ]
Khatami, E. [3 ]
She, J. -H. [4 ]
Moreno, J. [1 ]
Zaanen, J. [4 ]
Jarrell, M. [1 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[3] Georgetown Univ, Dept Phys, Washington, DC 20057 USA
[4] Leiden Univ, Inst Lorentz Theoret Phys, NL-2300 RA Leiden, Netherlands
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.106.047004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the dynamical cluster approximation to understand the proximity of the superconducting dome to the quantum critical point in the two-dimensional Hubbard model. In a BCS formalism, T(c) may be enhanced through an increase in the d-wave pairing interaction (V(d)) or the bare pairing susceptibility (chi(0d)). At optimal doping, where Vd is revealed to be featureless, we find a power-law behavior of chi(0d)(omega = 0), replacing the BCS log, and strongly enhanced T(c). We suggest experiments to verify our predictions.
引用
收藏
页数:4
相关论文
共 19 条
[1]   What lies beneath the dome? [J].
Broun, D. M. .
NATURE PHYSICS, 2008, 4 (03) :170-172
[2]   EFFECTIVE PARTICLE-PARTICLE INTERACTION IN THE 2-DIMENSIONAL HUBBARD-MODEL [J].
BULUT, N ;
SCALAPINO, DJ ;
WHITE, SR .
PHYSICAL REVIEW B, 1993, 47 (10) :6157-6160
[3]   Non-Fermi-liquid behavior and d-wave superconductivity near the charge-density-wave quantum critical point [J].
Castellani, C ;
DiCastro, C ;
Grilli, M .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 103 (02) :137-144
[4]   Avoided criticality in near-optimally doped high-temperature superconductors [J].
Haule, Kristjan ;
Kotliar, Gabriel .
PHYSICAL REVIEW B, 2007, 76 (09)
[5]   Nonlocal dynamical correlations of strongly interacting electron systems [J].
Hettler, MH ;
Tahvildar-Zadeh, AN ;
Jarrell, M ;
Pruschke, T ;
Krishnamurthy, HR .
PHYSICAL REVIEW B, 1998, 58 (12) :R7475-R7479
[6]   MONTE-CARLO METHOD FOR MAGNETIC-IMPURITIES IN METALS [J].
HIRSCH, JE ;
FYE, RM .
PHYSICAL REVIEW LETTERS, 1986, 56 (23) :2521-2524
[7]   Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data [J].
Jarrell, M ;
Gubernatis, JE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 269 (03) :133-195
[8]   Quantum Monte Carlo algorithm for nonlocal corrections to the dynamical mean-field approximation [J].
Jarrell, M ;
Maier, T ;
Huscroft, C ;
Moukouri, S .
PHYSICAL REVIEW B, 2001, 64 (19)
[9]   Phase diagram of the Hubbard model: Beyond the dynamical mean field [J].
Jarrell, M ;
Maier, T ;
Hettler, MH ;
Tahvildarzadeh, AN .
EUROPHYSICS LETTERS, 2001, 56 (04) :563-569
[10]   Quantum criticality due to incipient phase separation in the two-dimensional Hubbard model [J].
Khatami, E. ;
Mikelsons, K. ;
Galanakis, D. ;
Macridin, A. ;
Moreno, J. ;
Scalettar, R. T. ;
Jarrell, M. .
PHYSICAL REVIEW B, 2010, 81 (20)