Wind Power Short-Term Prediction by a Hybrid PSO-ANFIS Approach

被引:5
|
作者
Pousinho, H. M. I. [1 ]
Catalao, J. P. S. [1 ]
Mendes, V. M. F. [2 ]
机构
[1] Univ Beira Interior, Dept Electromech Engn, Covilha, Portugal
[2] Inst Super Engn Lisbon, Dept Elect Engn & Automat, Lisbon, Portugal
来源
MELECON 2010: THE 15TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE | 2010年
关键词
NEURAL-NETWORK; SYSTEM; SPEED;
D O I
10.1109/MELCON.2010.5475923
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. A novel hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, is proposed in this paper for short-term wind power prediction. Results from a real-world case study are presented. Conclusions are duly drawn.
引用
收藏
页码:955 / 960
页数:6
相关论文
共 50 条
  • [1] A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal
    Pousinho, H. M. I.
    Mendes, V. M. F.
    Catalao, J. P. S.
    ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (01) : 397 - 402
  • [2] A PSO-ANFIS based Hybrid Approach for Short Term PV Power Prediction in Microgrids
    Semero, Yordanos Kassa
    Zheng, Dehua
    Zhang, Jianhua
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2018, 46 (01) : 95 - 103
  • [3] A Double-stage Hierarchical Hybrid PSO-ANFIS Model for Short-term Wind Power Forecasting
    Li, Han
    Eseye, Abinet Tesfaye
    Zhang, Jianhua
    Zheng, Dehua
    2017 NINTH ANNUAL IEEE GREEN TECHNOLOGIES CONFERENCE (GREENTECH 2017), 2017, : 342 - 349
  • [4] Short-term electricity prices forecasting in a competitive market by a hybrid PSO-ANFIS approach
    Pousinho, H. M. I.
    Mendes, V. M. F.
    Catalao, J. P. S.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2012, 39 (01) : 29 - 35
  • [5] Wind power prediction analysis by ANFIS, GA-ANFIS and PSO-ANFIS
    Kumar, Neeraj
    Sudha, K.
    Tharani, Kusum
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (03): : 481 - 486
  • [6] Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Wind Power Forecasting in Portugal
    Catalao, J. P. S.
    Pousinho, H. M. I.
    Mendes, V. M. F.
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2011, 2 (01) : 50 - 59
  • [7] Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Wind Power Forecasting in Portugal
    Catalao, J. P. S.
    Pousinho, H. M. I.
    Mendes, V. M. F.
    2011 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING, 2011,
  • [8] Wind turbine power output very short-term forecast: A comparative study of data clustering techniques in a PSO-ANFIS model
    Adedeji, Paul A.
    Akinlabi, Stephen
    Madushele, Nkosinathi
    Olatunji, Obafemi O.
    Journal of Cleaner Production, 2020, 254
  • [9] Wind turbine power output very short-term forecast: A comparative study of data clustering techniques in a PSO-ANFIS model
    Adedeji, Paul A.
    Akinlabi, Stephen
    Madushele, Nkosinathi
    Olatunji, Obafemi O.
    JOURNAL OF CLEANER PRODUCTION, 2020, 254
  • [10] Short-term wind speed prediction based on SSA-PSO-ANFIS
    Lin T.
    Liu H.
    Zhao S.
    Zhao C.
    Ma T.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (03): : 128 - 134