The Riemannian L2 topology on the manifold of Riemannian metrics

被引:12
作者
Clarke, Brian [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
Manifold of Riemannian metrics; Superspace; Manifold of Riemannian structures; L-2; metric; SPACES;
D O I
10.1007/s10455-010-9227-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the manifold of all Riemannian metrics over a closed, finite-dimensional manifold. In particular, we investigate the topology on the manifold of metrics induced by the distance function of the L (2) Riemannian metric-so-called because it induces an L (2) topology on each tangent space. It turns out that this topology on the tangent spaces gives rise to an L (1)-type topology on the manifold of metrics itself. We study this new topology and its completion, which agrees homeomorphically with the completion of the L (2) metric. We also give a user-friendly criterion for convergence (with respect to the L (2) metric) in the manifold of metrics.
引用
收藏
页码:131 / 163
页数:33
相关论文
共 14 条
[1]  
[Anonymous], THESIS U LEIPZIG
[2]  
Bogachev V. I., 2007, MEASURE THEORY, V2, DOI DOI 10.1007/978-3-540-34514-5
[3]  
Bogachev VI., 2007, MEASURE THEORY, VI, II
[4]  
BOURGUIGNON JP, 1975, COMPOS MATH, V30, P1
[5]  
CLARKE B, COMPLETION MANIFOLD
[6]  
CLARKE B, 2010, CALC VAR PARTIAL DIF, P1
[7]  
Ebin D. G., 1968, P S PURE MATH, VXV, P11
[8]  
FREED DS, 1989, MICH MATH J, V36, P323
[9]   THE RIEMANNIAN MANIFOLD OF ALL RIEMANNIAN METRICS [J].
GILMEDRANO, O ;
MICHOR, PW .
QUARTERLY JOURNAL OF MATHEMATICS, 1991, 42 (166) :183-202
[10]  
Gromov M., 2007, METRIC STRUCTURES RI