Homogenization of solutions of initial boundary value problems for parabolic systems

被引:0
作者
Meshkova, Yu. M. [1 ]
Suslina, T. A. [2 ]
机构
[1] St Petersburg State Univ, Chebyshev Lab, St Petersburg 199034, Russia
[2] St Petersburg State Univ, Dept Phys, St Petersburg 199034, Russia
关键词
homogenization of periodic differential operators; parabolic systems; initial boundary value problems; effective operator; corrector; operator error estimates; PERIODIC COEFFICIENTS; CAUCHY-PROBLEM; DIRICHLET PROBLEM; ELLIPTIC-SYSTEMS;
D O I
10.1007/s10688-015-0087-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let O subset of R-d be a bounded C-1,C-1 domain. In L-2(O; C-n) we consider strongly elliptic operators A(D,epsilon) and A(N,epsilon) given by the differential expression b(D)*g(x/epsilon)b(D), epsilon > 0, with Dirichlet and Neumann boundary conditions, respectively. Here g(x) is a bounded positive definite matrix-valued function assumed to be periodic with respect to some lattice and b(D) is a first-order differential operator. We find approximations of the operators exp(-A(D,epsilon)t) and exp(-A(N,epsilon)t) for fixed t > 0 and small epsilon in the L-2 -> L-2 and L-2 -> H-1 operator norms with error estimates depending on epsilon and t. The results are applied to homogenize the solutions of initial boundary value problems for parabolic systems.
引用
收藏
页码:72 / 76
页数:5
相关论文
共 16 条
[1]  
[Anonymous], 2012, Homogenization of differential operators and integral functionals
[2]  
[Anonymous], 2007, Amer. Math. Soc. Transl., V220, P201, DOI 10.1090/trans2/220/09
[3]  
[Anonymous], 1989, MATH APPL SOVIET SER
[4]  
Bensoussan A., 1978, STUDIES MATH APPL, V5
[5]   HOMOGENIZATION OF THE CAUCHY PROBLEM FOR PARABOLIC SYSTEMS WITH PERIODIC COEFFICIENTS [J].
Meshkova, Yu. M. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (06) :981-1019
[6]  
Necas J, 2012, SPRINGER MONOGRAPHS, DOI DOI 10.1007/978-3-642-10455-8
[7]   OPERATOR ERROR ESTIMATES FOR HOMOGENIZATION OF THE ELLIPTIC DIRICHLET PROBLEM IN A BOUNDED DOMAIN [J].
Pakhnin, M. A. ;
Suslina, T. A. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2013, 24 (06) :949-976
[8]  
Stein E. M., 1970, Princeton Mathematical Series
[9]   Homogenization of a Periodic Parabolic Cauchy Problem in the Sobolev Space H1(Rd) [J].
Suslina, T. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (04) :390-447
[10]   Homogenization of elliptic problems depending on a spectral parameter [J].
Suslina, T. A. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2014, 48 (04) :309-313