18F-FDG PET imaging analysis for computer aided Alzheimer's diagnosis

被引:112
作者
Illan, I. A. [1 ]
Gorriz, J. M. [1 ]
Ramirez, J. [1 ]
Salas-Gonzalez, D. [1 ]
Lopez, M. M. [1 ]
Segovia, F. [1 ]
Chaves, R. [1 ]
Gomez-Rio, M. [3 ]
Puntonet, C. G. [2 ]
机构
[1] Univ Granada, Dept Signal Theory Networking & Commun, E-18071 Granada, Spain
[2] Univ Granada, Dept Comp Architecture & Technol, E-18071 Granada, Spain
[3] Virgen de las Nieves Hosp, Nucl Med Serv, Granada, Spain
基金
美国国家卫生研究院;
关键词
Alzheimer's disease (AD); Computer aided diagnosis; Principal component analysis (PCA); Independent component analysis (ICA); Support vector machine (SVM); Supervised learning; FDG-PET; POSITRON-EMISSION-TOMOGRAPHY; MILD COGNITIVE IMPAIRMENT; DIMENSIONAL PATTERN-CLASSIFICATION; INDEPENDENT COMPONENT ANALYSIS; POSTERIOR CINGULATE CORTEX; FDG-PET; FEATURE-SELECTION; DISEASE; SPECT; DEMENTIA;
D O I
10.1016/j.ins.2010.10.027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Finding sensitive and appropriate technologies for non-invasive observation and early detection of Alzheimer's disease (AD) is of fundamental importance to develop early treatments. In this work we develop a fully automatic computer aided diagnosis (CAD) system for high-dimensional pattern classification of baseline F-18-FDG PET scans from Alzheimer's disease neuroimaging initiative (ADNI) participants. Image projection as feature space dimension reduction technique is combined with an eigenimage based decomposition for feature extraction, and support vector machine (SVM) is used to manage the classification task. A two folded objective is achieved by reaching relevant classification performance complemented with an image analysis support for final decision making. A 88.24% accuracy in identifying mild AD, with 88.64% specificity, and 87.70% sensitivity is obtained. This method also allows the identification of characteristic AD patterns in mild cognitive impairment (MCI) subjects. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:903 / 916
页数:14
相关论文
共 77 条
[21]   PREVALENCE OF ALZHEIMERS-DISEASE IN A COMMUNITY POPULATION OF OLDER PERSONS - HIGHER THAN PREVIOUSLY REPORTED [J].
EVANS, DA ;
FUNKENSTEIN, H ;
ALBERT, MS ;
SCHERR, PA ;
COOK, NR ;
CHOWN, MJ ;
HEBERT, LE ;
HENNEKENS, CH ;
TAYLOR, JO .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1989, 262 (18) :2551-2556
[22]   Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline [J].
Fan, Yong ;
Batmanghelich, Nematollah ;
Clark, Chris M. ;
Davatzikos, Christos .
NEUROIMAGE, 2008, 39 (04) :1731-1743
[23]   ICA Analysis of Retina Images for Glaucoma Classification [J].
Fink, F. ;
Woerle, K. ;
Gruber, P. ;
Tome, A. M. ;
Gorriz-Saez, J. M. ;
Puntonet, C. G. ;
Lang, E. W. .
2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, :4664-+
[24]   ALZHEIMERS-DISEASE - FOCAL CORTICAL CHANGES SHOWN BY POSITRON EMISSION TOMOGRAPHY [J].
FOSTER, NL ;
CHASE, TN ;
FEDIO, P ;
PATRONAS, NJ ;
BROOKS, RA ;
DICHIRO, G .
NEUROLOGY, 1983, 33 (08) :961-965
[25]   CORTICAL ABNORMALITIES IN ALZHEIMERS-DISEASE [J].
FOSTER, NL ;
CHASE, TN ;
MANSI, L ;
BROOKS, R ;
FEDIO, P ;
PATRONAS, NJ ;
DICHIRO, G .
ANNALS OF NEUROLOGY, 1984, 16 (06) :649-654
[26]  
Friston K, 2007, STATISTICAL PARAMETRIC MAPPING: THE ANALYSIS OF FUNCTIONAL BRAIN IMAGES, P1
[27]   An effective cluster-based model for robust speech detection and speech recognition in noisy environments [J].
Gorriz, J. M. ;
Ramirez, J. ;
Segura, J. C. ;
Puntonet, C. G. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2006, 120 (01) :470-481
[28]   Automatic selection of ROIs in functional imaging using Gaussian mixture models [J].
Gorriz, J. M. ;
Lassl, A. ;
Ramirez, J. ;
Salas-Gonzalez, D. ;
Puntonet, C. G. ;
Lang, E. W. .
NEUROSCIENCE LETTERS, 2009, 460 (02) :108-111
[29]  
Górriz JM, 2004, LECT NOTES COMPUT SC, V3195, P414
[30]   A new model for time-series forecasting using radial basis functions and exogenous data [J].
Górriz, JM ;
Puntonet, CG ;
Salmerón, M ;
de la Rosa, JJG .
NEURAL COMPUTING & APPLICATIONS, 2004, 13 (02) :101-111