Prediction of visual function from automatically quantified optical coherence tomography biomarkers in patients with geographic atrophy using machine learning

被引:14
作者
Balaskas, Konstantinos [1 ]
Glinton, S. [1 ]
Keenan, T. D. L. [2 ]
Faes, L. [1 ]
Liefers, B. [1 ,4 ]
Zhang, G. [1 ]
Pontikos, N. [1 ]
Struyven, R. [1 ]
Wagner, S. K. [1 ]
McKeown, A. [3 ]
Patel, P. J. [1 ]
Keane, P. A. [1 ]
Fu, D. J. [1 ]
机构
[1] Moorfields Eye Hosp NHS Fdn Trust, NIHR Biomed Res Ctr, UCL Inst Ophthalmol, Moorfields Reading Ctr & Clin AI Hub, 162 City Rd, London EC1V 2PD, England
[2] NEI, Div Epidemiol & Clin Applicat, NIH, Bethesda, MD 20892 USA
[3] Apellis Pharmaceut Inc, Waltham, MA USA
[4] Erasmus Univ, Med Ctr, Dept Ophthalmol, Rotterdam, Netherlands
关键词
MACULAR DEGENERATION; ACUITY; REPEATABILITY; VISION;
D O I
10.1038/s41598-022-19413-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monitoring, prognostic research, and clinical endpoints for therapy development. Such automatically quantified biomarkers on OCT are likely to further elucidate structure-function correlation in GA and thus the pathophysiological mechanisms of disease development and progression. In this work, we aimed to predict visual function with machine-learning applied to automatically acquired quantitative imaging biomarkers in GA. A post-hoc analysis of data from a clinical trial and routine clinical care was conducted. A deep-learning automated segmentation model was applied on OCT scans from 476 eyes (325 patients) with GA. A separate machine learning prediction model (Random Forest) used the resultant quantitative OCT (qOCT) biomarkers to predict cross-sectional visual acuity under standard (VA) and low luminance (LLVA). The primary outcome was regression coefficient (r(2)) and mean absolute error (MAE) for cross-sectional VA and LLVA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. OCT parameters were predictive of VA (r(2) 0.40 MAE 11.7 ETDRS letters) and LLVA (r(2) 0.25 MAE 12.1). Normalised random forest feature importance, as a measure of the predictive value of the three constituent features of GA; retinal pigment epithelium (RPE)-loss, photoreceptor degeneration (PDR), hypertransmission and their locations, was reported both on voxel-level heatmaps and ETDRS-grid subfields. The foveal region (46.5%) and RPE-loss (31.1%) had greatest predictive importance for VA. For LLVA, however, non-foveal regions (74.5%) and PDR (38.9%) were most important. In conclusion, automated qOCT biomarkers demonstrate predictive significance for VA and LLVA in GA. LLVA is itself predictive of GA progression, implying that the predictive qOCT biomarkers provided by our model are also prognostic.
引用
收藏
页数:11
相关论文
共 43 条
  • [1] Allingham MJ, 2019, INVEST OPHTH VIS SCI, V60
  • [2] Bagheri Saghar, 2019, J Vitreoretin Dis, V3, P278, DOI 10.1177/2474126419859454
  • [3] Role of retinal pigment epithelium in age-related macular disease: a systematic review
    Bird, Alan
    [J]. BRITISH JOURNAL OF OPHTHALMOLOGY, 2021, 105 (11) : 1469 - 1474
  • [4] Geographic Atrophy A Histopathological Assessment
    Bird, Alan C.
    Phillips, Rachel L.
    Hageman, Gregory S.
    [J]. JAMA OPHTHALMOLOGY, 2014, 132 (03) : 338 - 345
  • [5] Multimodal Evaluation of Visual Function in Geographic Atrophy versus Normal Eyes
    Burguera-Gimenez, Noemi
    Garcia-Lazaro, Santiago
    Espana-Gregori, Enrique
    Gallego-Pinazo, Roberto
    Burguera-Gimenez, Neus
    Rodriguez-Vallejo, Manuel
    Jonna, Gowtham
    [J]. CLINICAL OPHTHALMOLOGY, 2020, 14 : 1533 - 1545
  • [6] Report From the NEI/FDA Endpoints Workshop on Age-Related Macular Degeneration and Inherited Retinal Diseases
    Csaky, Karl
    Ferris, Frederick, III
    Chew, Emily Y.
    Nair, Prashant
    Cheetham, Janet K.
    Duncan, Jacque L.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (09) : 3456 - 3463
  • [7] Geographic atrophy in patients with advanced dry age-related macular degeneration: current challenges and future prospects
    Danis, Ronald P.
    Lavine, Jeremy A.
    Domalpally, Amitha
    [J]. CLINICAL OPHTHALMOLOGY, 2015, 9 : 2159 - 2174
  • [8] Predicting Incremental and Future Visual Change in Neovascular Age-Related Macular Degeneration Using Deep Learning
    Fu, Dun Jack
    Faes, Livia
    Wagner, Siegfried K.
    Moraes, Gabriella
    Chopra, Reena
    Patel, Praveen J.
    Balaskas, Konstantinos
    Keenan, Tiarnan D. L.
    Bachmann, Lucas M.
    Keane, Pearse A.
    [J]. OPHTHALMOLOGY RETINA, 2021, 5 (11): : 1074 - 1084
  • [9] STrengthening the Reporting of OBservational studies in Epidemiology - Molecular Epidemiology (STROBE-ME): An extension of the STROBE statement
    Gallo, Valentina
    Egger, Matthias
    McCormack, Valerie
    Farmer, Peter B.
    Ioannidis, John P. A.
    Kirsch-Volders, Micheline
    Matullo, Giuseppe
    Phillips, David H.
    Schoket, Bernadette
    Stromberg, Ulf
    Vermeulen, Roel
    Wild, Christopher
    Porta, Miquel
    Vineis, Paolo
    [J]. MUTAGENESIS, 2012, 27 (01) : 17 - 29
  • [10] GASS JDM, 1973, ARCH OPHTHALMOL-CHIC, V90, P206