Predicting Particle Swarm Optimization Control Parameters From Fitness Landscape Characteristics

被引:1
作者
Dennis, Cody [1 ]
Ombuki-Berman, Beatrice M. [1 ]
Engelbrecht, Andries [2 ,3 ]
机构
[1] Brock Univ, Dept Comp Sci, St Catharines, ON, Canada
[2] Stellenbosch Univ, Dept Ind Engn, Stellenbosch, South Africa
[3] Stellenbosch Univ, Comp Sci Div, Stellenbosch, South Africa
来源
2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021) | 2021年
基金
加拿大自然科学与工程研究理事会;
关键词
Particle swarm optimization; Control parameters; Fitness landscape analysis; Control parameter configuration; Neural networks; ALGORITHMS;
D O I
10.1109/CEC45853.2021.9505006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selecting appropriate control parameters for the particle swarm optimization algorithm can be extremely time consuming and expensive, yet it is necessary in order to achieve optimal performance on a problem. Despite its significance, the issue of control parameter selection remains an open problem. This work leverages techniques from the field of fitness landscape analysis to characterize a large suite of benchmark problems. Extensive experimentation is performed to identify strong control parameters for each problem, and machine learning techniques are used to predict strong control parameters from the characterization of a problem. The results demonstrate that good generalization is possible with minimal training data. This suggests that the cost of parameter selection can be significantly reduced.
引用
收藏
页码:2289 / 2298
页数:10
相关论文
共 63 条
  • [1] [Anonymous], 1995, ICGA, DOI DOI 10.5555/645514.657929
  • [2] [Anonymous], 2015, TENSORFLOW LARGE SCA
  • [3] [Anonymous], 2001, An Analysis of Particle Swarm Optimizers'
  • [4] Beham A, 2013, LECT NOTES COMPUT SC, V8111, P292, DOI 10.1007/978-3-642-53856-8_37
  • [5] Per Instance Algorithm Configuration of CMA-ES with Limited Budget
    Belkhir, Nacim
    Dreo, Johann
    Saveant, Pierre
    Schoenauer, Marc
    [J]. PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 681 - 688
  • [6] Impacts of Coefficients on Movement Patterns in the Particle Swarm Optimization Algorithm
    Bonyadi, Mohammad Reza
    Michalewicz, Zbigniew
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2017, 21 (03) : 378 - 390
  • [7] Bosman A. S, 2019, THESIS U PRETORIA
  • [8] Visualising basins of attraction for the cross-entropy and the squared error neural network loss functions
    Bosman, Anna Sergeevna
    Engelbrecht, Andries
    Helbig, Marde
    [J]. NEUROCOMPUTING, 2020, 400 : 113 - 136
  • [9] Bosman P. R, 2019, THESIS U PRETORIA
  • [10] Diversity rate of change measurement for particle swarm optimisers
    [J]. 1600, Springer Verlag (8667): : 86 - 97