Visualisation of Pareto Front Approximation: A Short Survey and Empirical Comparisons

被引:0
作者
Gao, Huiru [1 ]
Nie, Haifeng [1 ]
Li, Ke [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Coll Comp Sci & Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Exeter, Dept Comp Sci, Exeter EX4 4QF, Devon, England
来源
2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2019年
关键词
Visualisation; multi-objective optimisation; decision-making; MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS; OPTIMIZATION;
D O I
10.1109/cec.2019.8790298
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Visualisation is an effective way to facilitate the analysis and understanding of multivariate data. In the context of multi-objective optimisation, comparing to quantitative performance metrics, visualisation is, in principle, able to provide a decision maker better insights about Pareto front approximation sets (e.g. the distribution of solutions, the geometric characteristics of Pareto front approximation) thus to facilitate the decision-making (e.g. the exploration of trade-off relationship, the knee region or region of interest). In this paper, we overview some currently prevalent visualisation techniques according to the way how data is represented. To have a better understanding of the pros and cons of different visualisation techniques, we empirically compare six representative visualisation techniques for the exploratory analysis of different Pareto front approximation sets obtained by four state-of-the-art evolutionary multi-objective optimisation algorithms on the classic DTLZ benchmark test problems. From the empirical results, we find that visual comparisons also follow the No-Free-Lunch theorem where no single visualisation technique is able to provide a comprehensive understanding of the characteristics of a Pareto front approximation set. In other words, a specific type of visualisation technique is only good at exploring a particular aspect of the data.
引用
收藏
页码:1750 / 1757
页数:8
相关论文
共 38 条
  • [1] PLOTS OF HIGH-DIMENSIONAL DATA
    ANDREWS, DF
    [J]. BIOMETRICS, 1972, 28 (01) : 125 - &
  • [2] Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering
    Arias-Montano, Alfredo
    Coello Coello, Carlos A.
    Mezura-Montes, Efren
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2012, 16 (05) : 662 - 694
  • [3] Multi-objective optimization in material design and selection
    Ashby, MF
    [J]. ACTA MATERIALIA, 2000, 48 (01) : 359 - 369
  • [4] HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization
    Bader, Johannes
    Zitzler, Eckart
    [J]. EVOLUTIONARY COMPUTATION, 2011, 19 (01) : 45 - 76
  • [5] Belkin M, 2002, ADV NEUR IN, V14, P585
  • [6] A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization
    Blasco, X.
    Herrero, J. M.
    Sanchis, J.
    Martinez, M.
    [J]. INFORMATION SCIENCES, 2008, 178 (20) : 3908 - 3924
  • [7] The balance between proximity and diversity in multiobjective evolutionary algorithms
    Bosman, PAN
    Thierens, D
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (02) : 174 - 188
  • [8] Hyper-Radial Visualization (HRV) method with range-based preferences for multi-objective decision making
    Chiu, Po-Wen
    Bloebaum, Christina L.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 40 (1-6) : 97 - 115
  • [9] An updated survey of GA-based multiobjective optimization techniques
    Coello, CAC
    [J]. ACM COMPUTING SURVEYS, 2000, 32 (02) : 109 - 143
  • [10] Deb K, 2004, ADV INFO KNOW PROC, P105