Learning real-world stimuli in a neural network with spike-driven synaptic dynamics

被引:260
作者
Brader, Joseph M. [1 ]
Senn, Walter
Fusi, Stefano
机构
[1] Univ Bern, Inst Physiol, Bern, Switzerland
[2] UNI Zurich, ETH, Inst Neuroinformat, CH-8059 Zurich, Switzerland
关键词
D O I
10.1162/neco.2007.19.11.2881
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a model of spike-driven synaptic plasticity inspired by experimental observations and motivated by the desire to build an electronic hardware device that can learn to classify complex stimuli in a semisupervised fashion. During training, patterns of activity are sequentially imposed on the input neurons, and an additional instructor signal drives the output neurons toward the desired activity. The network is made of integrate-and-fire neurons with constant leak and a floor. The synapses are bistable, and they are modified by the arrival of presynaptic spikes. The sign of the change is determined by both the depolarization and the state of a variable that integrates the postsynaptic action potentials. Following the training phase, the instructor signal is removed, and the output neurons are driven purely by the activity of the input neurons weighted by the plastic synapses. In the absence of stimulation, the synapses preserve their internal state indefinitely. Memories are also very robust to the disruptive action of spontaneous activity. A network of 2000 input neurons is shown to be able to classify correctly a large number (thousands) of highly overlapping patterns (300 classes of preprocessed Latex characters, 30 patterns per class, and a subset of the NIST characters data set) and to generalize with performances that are better than or comparable to those of artificial neural networks. Finally we show that the synaptic dynamics is compatible with many of the experimental observations on the induction of long-term modifications (spike-timing-dependent plasticity and its dependence on both the postsynaptic depolarization and the frequency of pre- and postsynaptic neurons).
引用
收藏
页码:2881 / 2912
页数:32
相关论文
共 77 条
[1]   Dynamical model of long-term synaptic plasticity [J].
Abarbanel, HDI ;
Huerta, R ;
Rabinovich, MI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (15) :10132-10137
[2]   Synaptic plasticity: taming the beast [J].
Abbott, L. F. ;
Nelson, Sacha B. .
NATURE NEUROSCIENCE, 2000, 3 (11) :1178-1183
[3]   Context-enabled learning in the human visual system [J].
Adini, Y ;
Sagi, D ;
Tsodyks, M .
NATURE, 2002, 415 (6873) :790-793
[4]  
Albus JS, 1971, MATH BIOSCI, V10, P26, DOI DOI 10.1016/0025-5564(71)90051-4
[5]  
AMIT D, 2003, NEURLA COMPUTATION, V15, P567
[6]   CONSTRAINTS ON LEARNING IN DYNAMIC SYNAPSES [J].
AMIT, DJ ;
FUSI, S .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1992, 3 (04) :443-464
[7]   LEARNING IN NEURAL NETWORKS WITH MATERIAL SYNAPSES [J].
AMIT, DJ ;
FUSI, S .
NEURAL COMPUTATION, 1994, 6 (05) :957-982
[8]  
Amit DJ, 1989, MODELING BRAIN FUNCT, DOI DOI 10.1017/CBO9780511623257
[9]   Shape quantization and recognition with randomized trees [J].
Amit, Y ;
Geman, D .
NEURAL COMPUTATION, 1997, 9 (07) :1545-1588
[10]   Attractor networks for shape recognition [J].
Amit, Y ;
Mascaro, M .
NEURAL COMPUTATION, 2001, 13 (06) :1415-1442