Hacking commercial quantum cryptography systems by tailored bright illumination

被引:823
作者
Lydersen, Lars [1 ,2 ]
Wiechers, Carlos [3 ,4 ,5 ]
Wittmann, Christoffer [3 ,4 ]
Elser, Dominique [3 ,4 ]
Skaar, Johannes [1 ,2 ]
Makarov, Vadim [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Elect & Telecommun, NO-7491 Trondheim, Norway
[2] Univ Grad Ctr, NO-2027 Kjeller, Norway
[3] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
[4] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, D-91058 Erlangen, Germany
[5] Univ Guanajuato, Dept Fis, Guanajuato 37150, Mexico
关键词
KEY DISTRIBUTION; SECURITY; CRYPTOSYSTEMS; ATTACK; PROOF;
D O I
10.1038/NPHOTON.2010.214
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics(1-4). So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons(5). Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built from off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.
引用
收藏
页码:686 / 689
页数:4
相关论文
共 27 条
[1]  
[Anonymous], 2001, LECT NOTES COMPUTER
[2]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[3]  
BONEH D, 1999, NOT AM MATH SOC, V46, P203
[4]   Evolution and prospects for single-photon avalanche diodes and quenching circuits [J].
Cova, S ;
Ghioni, M ;
Lotito, A ;
Rech, I ;
Zappa, F .
JOURNAL OF MODERN OPTICS, 2004, 51 (9-10) :1267-1288
[5]  
Fung CHF, 2009, QUANTUM INF COMPUT, V9, P131
[6]  
Gottesman D, 2004, QUANTUM INF COMPUT, V4, P325
[7]   Quantum key distribution with high loss: Toward global secure communication [J].
Hwang, WY .
PHYSICAL REVIEW LETTERS, 2003, 91 (05) :579011-579014
[8]   Breaking a quantum key distribution system through a timing side channel [J].
Lamas-Linares, Antia ;
Kurtsiefer, Christian .
OPTICS EXPRESS, 2007, 15 (15) :9388-9393
[9]   Unconditional security of quantum key distribution over arbitrarily long distances [J].
Lo, HK ;
Chau, HF .
SCIENCE, 1999, 283 (5410) :2050-2056
[10]  
Lütkenhaus N, 2000, PHYS REV A, V61, DOI 10.1103/PhysRevA.61.052304