Construction of porous nanoscale NiO/NiCo2O4 heterostructure for highly enhanced electrocatalytic oxygen evolution activity

被引:85
作者
Sun, Shanfu [1 ]
Jin, Xiaoli [1 ]
Cong, Bowen [1 ]
Zhou, Xin [1 ]
Hong, Weizhao [1 ]
Chen, Gang [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Porous; NiO/NiCo2O4; Heterostructure interfaces; Oxygen evolution reaction; DFT calculations; LAYERED DOUBLE HYDROXIDE; INITIO MOLECULAR-DYNAMICS; SURFACE-AREA; WATER; OXIDE; NANOSHEETS; TRANSITION; OXIDATION; NANOSTRUCTURES; NANOCRYSTALS;
D O I
10.1016/j.jcat.2019.09.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing highly active and inexpensive electrocatalysts for oxygen evolution reaction (OER) is critical to large-scale applications of electrochemical water splitting. In the present work, a novel porous NiO/NiCo2O4 heterostructure is constructed by two-stage calcination of nickel-cobalt bimetallic hydroxide precursors prepared using a microwave-assisted hydrothermal method, in which abundant interfaces are constituted. The NiO phase stabilized in NiCo2O4 matrix is the nanometer scale (ca. 13 nm). The porous nanoscale NiO/NiCo2O4 heterostructure shows a 10 mA cm(-2) current density under the overpotential of 264 mV which outperforms the noble catalyst RuO2. It is demonstrated that the highly active Ni3+ species generated by the oxidation of nanometer scale NiO surface are responsible for enhanced OER. Additionally, DFT calculations certify that the heterostructure interfaces promote the chemisorption of OH intermediates. This strategy of increasing the intrinsic activity and improving the chemisorption abilities for oxygen-containing intermediates by constructing nanoscale heterostructure electrocatalysts provides a feasible method to accelerate the reaction rate of OER. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 67 条
[1]   Heterostructure-Promoted Oxygen Electrocatalysis Enables Rechargeable Zinc-Air Battery with Neutral Aqueous Electrolyte [J].
An, Li ;
Zhang, Zhiyong ;
Feng, Jianrui ;
Lv, Fan ;
Li, Yuxuan ;
Wang, Rui ;
Lu, Min ;
Gupta, Ram B. ;
Xi, Pinxian ;
Zhang, Sen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (50) :17624-17631
[2]  
[Anonymous], 2015, Angew. Chem., DOI DOI 10.1002/ANGE.201504358
[3]   Microwave-Assisted Synthesis of Colloidal Inorganic Nanocrystals [J].
Baghbanzadeh, Mostafa ;
Carbone, Luigi ;
Cozzoli, P. Davide ;
Kappe, C. Oliver .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (48) :11312-11359
[4]   Why Is Bulk Thermochemistry a Good Descriptor for the Electrocatalytic Activity of Transition Metal Oxides? [J].
Calle-Vallejo, Federico ;
Diaz-Morales, Oscar A. ;
Kolb, Manuel J. ;
Koper, Marc T. M. .
ACS CATALYSIS, 2015, 5 (02) :869-873
[5]   Blue pigments based on CoxZn1-xAl2O4 spinels synthesized by the polymeric precursor method [J].
de Souza, Luiz K. C. ;
Zamian, Jose R. ;
da Rocha Filho, Geraldo N. ;
Soledade, Luiz E. B. ;
dos Santos, Ieda M. G. ;
Souza, Antonio G. ;
Scheller, Thomas ;
Angelica, Romulo S. ;
da Costa, Carlos E. F. .
DYES AND PIGMENTS, 2009, 81 (03) :187-192
[6]   VEGARD LAW [J].
DENTON, AR ;
ASHCROFT, NW .
PHYSICAL REVIEW A, 1991, 43 (06) :3161-3164
[7]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337
[8]   Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications [J].
Faber, Matthew S. ;
Jin, Song .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (11) :3519-3542
[9]   Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation [J].
Fan, Ke ;
Chen, Hong ;
Ji, Yongfei ;
Huang, Hui ;
Claesson, Per Martin ;
Daniel, Quentin ;
Philippe, Bertrand ;
Rensmo, Hakan ;
Li, Fusheng ;
Luo, Yi ;
Sun, Licheng .
NATURE COMMUNICATIONS, 2016, 7
[10]   Metallic Transition Metal Selenide Holey Nanosheets for Efficient Oxygen Evolution Electrocatalysis [J].
Fang, Zhiwei ;
Peng, Lele ;
Lv, Haifeng ;
Zhu, Yue ;
Yan, Chunshuang ;
Wang, Shengqi ;
Kalyani, Pranav ;
Wu, Xiaojun ;
Yu, Guihua .
ACS NANO, 2017, 11 (09) :9550-9557